全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Sexually Dimorphic and Sex-Independent Left-Right Asymmetries in Chicken Embryonic Gonads

DOI: 10.1371/journal.pone.0069893

Full-Text   Cite this paper   Add to My Lib

Abstract:

Female birds develop asymmetric gonads: a functional ovary develops on the left, whereas the right gonad regresses. In males, however, testes develop on both sides. We examined the distribution of germ cells using Vasa/Cvh as a marker. Expression is asymmetric in both sexes: at stage 35 the left gonad contains significantly more germ cells than the right. A similar expression pattern is seen for expression of ERNI (Ens1), a gene expressed in chick embryonic stem cells while they self-renew, but downregulated upon differentiation. Other pluripotency-associated markers (PouV/Oct3/4, Nanog and Sox2) also show asymmetric expression (more expressing cells on the left) in both sexes, but this asymmetry is at least partly due to expression in stromal cells of the developing gonad, and the pattern is different for all the genes. Therefore germ cell and pluripotency-associated genes show both sex-dependent and independent left-right asymmetry and a complex pattern of expression.

References

[1]  Romanoff AL (1960) The avian embryo: structural and functional development. New York: Macmillan. 1305 p.
[2]  Smith CA, Sinclair AH (2004) Sex determination: insights from the chicken. Bioessays 26: 120–132.
[3]  Smith CA, Sinclair AH (2001) Sex determination in the chicken embryo. J Exp Zool 290: 691–699.
[4]  Smith CA, Roeszler KN, Hudson QJ, Sinclair AH (2007) Avian sex determination: what, when and where? Cytogenet Genome Res 117: 165–173.
[5]  Zaccanti F, Vallisneri M, Quaglia A (1990) Early aspects of sex differentiation in the gonads of chick embryos. Differentiation 43: 71–80.
[6]  Fujimoto T, Ukeshima A, Kiyofuji R (1976) The origin, migration and morphology of the primordial germ cells in the chick embryo. Anat Rec 185: 139–145.
[7]  Fuyuta M, Miyayama Y, Fujimoto T (1974) Histochemical identification of primordial germ cells in human embryos by PAS reaction. Okajimas Folia Anat Jpn 51: 251–262.
[8]  Smith CA, Katz M, Sinclair AH (2003) DMRT1 is upregulated in the gonads during female-to-male sex reversal in ZW chicken embryos. Biol Reprod 68: 560–570.
[9]  Smith CA, Roeszler KN, Ohnesorg T, Cummins DM, Farlie PG, et al. (2009) The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature 461: 267–271.
[10]  Kent J, Wheatley SC, Andrews JE, Sinclair AH, Koopman P (1996) A male-specific role for SOX9 in vertebrate sex determination. Development 122: 2813–2822.
[11]  Morais da Silva S, Hacker A, Harley V, Goodfellow P, Swain A, et al. (1996) Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nature Genetics 14: 62–68.
[12]  Smith CA, Roeszler KN, Sinclair AH (2009) Genetic evidence against a role for W-linked histidine triad nucleotide binding protein (HINTW) in avian sex determination. Int J Dev Biol 53: 59–67.
[13]  Smith CA (2007) Sex determination in birds: HINTs from the W sex chromosome? Sex Dev 1: 279–285.
[14]  Reed KJ, Sinclair AH (2002) FET-1: a novel W-linked, female specific gene up-regulated in the embryonic chicken ovary. Mech Dev 119 Suppl 1S87–S90.
[15]  Hudson QJ, Smith CA, Sinclair AH (2005) Aromatase inhibition reduces expression of FOXL2 in the embryonic chicken ovary. Dev Dyn 233: 1052–1055.
[16]  Smith CA, Andrews JE, Sinclair AH (1997) Gonadal sex differentiation in chicken embryos: expression of estrogen receptor and aromatase genes. J Steroid Biochem Mol Biol 60: 295–302.
[17]  Andrews JE, Smith CA, Sinclair AH (1997) Sites of estrogen receptor and aromatase expression in the chicken embryo. Gen Comp Endocrinol 108: 182–190.
[18]  Zhu L, Marvin MJ, Gardiner A, Lassar AB, Mercola M, et al. (1999) Cerberus regulates left-right asymmetry of the embryonic head and heart. Curr Biol 9: 931–938.
[19]  Levin M (2005) Left-right asymmetry in embryonic development: a comprehensive review. Mech Dev 122: 3–25.
[20]  Levin M, Johnson RL, Stern CD, Kuehn M, Tabin C (1995) A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 82: 803–814.
[21]  Raya A, Izpisua Belmonte JC (2006) Left-right asymmetry in the vertebrate embryo: from early information to higher-level integration. Nature Reviews Genetics 7: 283–293.
[22]  Raya A, Izpisua Belmonte JC (2004) Unveiling the establishment of left-right asymmetry in the chick embryo. Mech Dev 121: 1043–1054.
[23]  Levin M (1997) Left-right asymmetry in vertebrate embryogenesis. Bioessays 19: 287–296.
[24]  Levin M, Nascone N (1997) Two molecular models of initial left-right asymmetry generation. Med Hypotheses 49: 429–435.
[25]  Levin M, Pagan S, Roberts DJ, Cooke J, Kuehn MR, et al. (1997) Left/right patterning signals and the independent regulation of different aspects of situs in the chick embryo. Dev Biol 189: 57–67.
[26]  Yoshioka H, Meno C, Koshiba K, Sugihara M, Itoh H, et al. (1998) Pitx2, a bicoid-type homeobox gene, is involved in a lefty-signaling pathway in determination of left-right asymmetry. Cell 94: 299–305.
[27]  Rodriguez-Leon J, Rodriguez Esteban C, Marti M, Santiago-Josefat B, Dubova I, et al. (2008) Pitx2 regulates gonad morphogenesis. Proc Natl Acad Sci U S A 105: 11242–11247.
[28]  Ishimaru Y, Komatsu T, Kasahara M, Katoh-Fukui Y, Ogawa H, et al. (2008) Mechanism of asymmetric ovarian development in chick embryos. Development 135: 677–685.
[29]  Guioli S, Lovell-Badge R (2007) PITX2 controls asymmetric gonadal development in both sexes of the chick and can rescue the degeneration of the right ovary. Development 134: 4199–4208.
[30]  Hoshino A, Koide M, Ono T, Yasugi S (2005) Sex-specific and left-right asymmetric expression pattern of Bmp7 in the gonad of normal and sex-reversed chicken embryos. Dev Growth Differ 47: 65–74.
[31]  Nakabayashi O, Kikuchi H, Kikuchi T, Mizuno S (1998) Differential expression of genes for aromatase and estrogen receptor during the gonadal development in chicken embryos. J Molec Endocrinol 20: 193–202.
[32]  Pain B, Clark ME, Shen M, Nakazawa H, Sakurai M, et al. (1996) Long-term in vitro culture and characterisation of avian embryonic stem cells with multiple morphogenetic potentialities. Development 122: 2339–2348.
[33]  van de Lavoir MC, Mather-Love C (2006) Avian embryonic stem cells. Methods Enzymol 418: 38–64.
[34]  van de Lavoir MC, Mather-Love C, Leighton P, Diamond JH, Heyer BS, et al. (2006) High-grade transgenic somatic chimeras from chicken embryonic stem cells. Mech Dev 123: 31–41.
[35]  van de Lavoir MC, Diamond JH, Leighton PA, Mather-Love C, Heyer BS, et al. (2006) Germline transmission of genetically modified primordial germ cells. Nature 441: 766–769.
[36]  Park TS, Han JY (2000) Derivation and characterization of pluripotent embryonic germ cells in chicken. Mol Reprod Dev 56: 475–482.
[37]  Lavial F, Acloque H, Bachelard E, Nieto MA, Samarut J, et al. (2009) Ectopic expression of Cvh (Chicken Vasa homologue) mediates the reprogramming of chicken embryonic stem cells to a germ cell fate. Dev Biol 330: 73–82.
[38]  Lavial F, Acloque H, Bertocchini F, Macleod DJ, Boast S, et al. (2007) The Oct4 homologue PouV and Nanog regulate pluripotency in chicken embryonic stem cells. Development 134: 3549–3563.
[39]  Uwanogho D, Rex M, Cartwright EJ, Pearl G, Healy C, et al. (1995) Embryonic expression of the chicken Sox2, Sox3 and Sox11 genes suggests an interactive role in neuronal development. Mech Dev 49: 23–36.
[40]  Rex M, Scotting PJ (1994) Chick HoxB3: deduced amino-acid sequence and embryonic gene expression. Gene 149: 381–382.
[41]  Streit A, Berliner AJ, Papanayotou C, Sirulnik A, Stern CD (2000) Initiation of neural induction by FGF signalling before gastrulation. Nature 406: 74–78.
[42]  Acloque H, Mey A, Birot AM, Gruffat H, Pain B, et al. (2004) Transcription factor cCP2 controls gene expression in chicken embryonic stem cells. Nucl Acids Res 32: 2259–2271.
[43]  Acloque H, Risson V, Birot AM, Kunita R, Pain B, et al. (2001) Identification of a new gene family specifically expressed in chicken embryonic stem cells and early embryo. Mech Dev 103: 79–91.
[44]  Witschi E (1935) Origin of asymmetry in the reproductive system of birds. Am J Anat 56: 119–141.
[45]  Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88: 49–92.
[46]  Shiratori H, Hamada H (2006) The left-right axis in the mouse: from origin to morphology. Development 133: 2095–2104.
[47]  Gage PJ, Suh H, Camper SA (1999) Dosage requirement of Pitx2 for development of multiple organs. Development 126: 4643–4651.
[48]  Gage PJ, Suh H, Camper SA (1999) The bicoid-related Pitx gene family in development. Mamm Genome 10: 197–200.
[49]  Lin CR, Kioussi C, O’Connell S, Briata P, Szeto D, et al. (1999) Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature 401: 279–282.
[50]  Lu MF, Pressman C, Dyer R, Johnson RL, Martin JF (1999) Function of Rieger syndrome gene in left-right asymmetry and craniofacial development. Nature 401: 276–278.
[51]  Dubois R, Cuminge D (1978) [Primary asymmetry in the distribution of primordial germ cells during colonization of gonadal buds in chick embryo]. C R Acad Sci Hebd Seances Acad Sci D 286: 535–538.
[52]  Dubois R, Cuminge D (1979) [The cause of the primary asymmetry of germ cell distribution in the gonadal primordia of chick embryo]. C R Acad Sci Hebd Seances Acad Sci D 288: 895–898.
[53]  Dubois R, Cuminge D (1978) [Statistical study of the primary asymmetry in primordial germ cells distribution in the chick embryo]. C R Acad Sci Hebd Seances Acad Sci D 286: 1613–1616.
[54]  Swartz WJ, Domm LV (1972) A study on division of primordial germ cells in the early chick embryo. Am J Anat 135: 51–70.
[55]  Kerr CL, Hill CM, Blumenthal PD, Gearhart JD (2008) Expression of pluripotent stem cell markers in the human fetal ovary. Hum Reprod 23: 589–599.
[56]  Kerr CL, Hill CM, Blumenthal PD, Gearhart JD (2008) Expression of pluripotent stem cell markers in the human fetal testis. Stem Cells 26: 412–421.
[57]  Rex M, Uwanogho DA, Orme A, Scotting PJ, Sharpe PT (1997) cSox21 exhibits a complex and dynamic pattern of transcription during embryonic development of the chick central nervous system. Mech Dev 66: 39–53.
[58]  Stern CD (1998) Detection of multiple gene products simultaneously by in situ hybridization and immunohistochemistry in whole mounts of avian embryos. Curr Top Dev Biol 36: 223–243.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133