全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Evidence That Personal Genome Testing Enhances Student Learning in a Course on Genomics and Personalized Medicine

DOI: 10.1371/journal.pone.0068853

Full-Text   Cite this paper   Add to My Lib

Abstract:

An emerging debate in academic medical centers is not about the need for providing trainees with fundamental education on genomics, but rather the most effective educational models that should be deployed. At Stanford School of Medicine, a novel hands-on genomics course was developed in 2010 that provided students the option to undergo personal genome testing as part of the course curriculum. We hypothesized that use of personal genome testing in the classroom would enhance the learning experience of students. No data currently exist on how such methods impact student learning; thus, we surveyed students before and after the course to determine its impact. We analyzed responses using paired statistics from the 31 medical and graduate students who completed both pre-course and post-course surveys. Participants were stratified by those who did (N = 23) or did not (N = 8) undergo personal genome testing. In reflecting on the experience, 83% of students who underwent testing stated that they were pleased with their decision compared to 12.5% of students who decided against testing (P = 0.00058). Seventy percent of those who underwent personal genome testing self-reported a better understanding of human genetics on the basis of having undergone testing. Further, students who underwent personal genome testing demonstrated an average 31% increase in pre- to post-course scores on knowledge questions (P = 3.5×10?6); this was significantly higher (P = 0.003) than students who did not undergo testing, who showed a non-significant improvement. Undergoing personal genome testing and using personal genotype data in the classroom enhanced students' self-reported and assessed knowledge of genomics, and did not appear to cause significant anxiety. At least for self-selected students, the incorporation of personal genome testing can be an effective educational tool to teach important concepts of clinical genomic testing.

References

[1]  Johnson JA, Burkley BM, Langaee TY, Clare-Salzler MJ, Klein TE, et al. (2012) Implementing personalized medicine: development of a cost-effective customized pharmacogenetics genotyping array. Clin Pharmacol Ther 92: 437–439.
[2]  Pulley JM, Denny JC, Peterson JF, Bernard GR, Vnencak-Jones CL, et al. (2012) Operational implementation of prospective genotyping for personalized medicine: the design of the Vanderbilt PREDICT project. Clin Pharmacol Ther 92: 87–95.
[3]  Srinivasan BS, Evans EA, Flannick J, Patterson AS, Chang CC, et al. (2010) A universal carrier test for the long tail of Mendelian disease. Reprod Biomed Online 21: 537–551.
[4]  Johnson DS, Gemelos G, Baner J, Ryan A, Cinnioglu C, et al. (2010) Preclinical validation of a microarray method for full molecular karyotyping of blastomeres in a 24-h protocol. Hum Reprod 25: 1066–1075.
[5]  Fan HC, Blumenfeld YJ, Chitkara U, Hudgins L, Quake SR (2008) Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc Natl Acad Sci U S A 105: 16266–16271.
[6]  Worthey EA, Mayer AN, Syverson GD, Helbling D, Bonacci BB, et al. (2011) Making a definitive diagnosis: successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genet Med 13: 255–262.
[7]  Salari K (2009) The dawning era of personalized medicine exposes a gap in medical education. PLoS Med 6: e1000138.
[8]  Guttmacher AE, Porteous ME, McInerney JD (2007) Educating health-care professionals about genetics and genomics. Nat Rev Genet 8: 151–157.
[9]  Wiener CM, Thomas PA, Goodspeed E, Valle D, Nichols DG (2010) “Genes to society” –the logic and process of the new curriculum for the Johns Hopkins University School of Medicine. Acad Med 85: 498–506.
[10]  Salari K, Pizzo PA, Prober CG (2011) Commentary: to genotype or not to genotype? Addressing the debate through the development of a genomics and personalized medicine curriculum. Acad Med 86: 925–927.
[11]  Walt DR, Kuhlik A, Epstein SK, Demmer LA, Knight M, et al. (2011) Lessons learned from the introduction of personalized genotyping into a medical school curriculum. Genet Med 13: 63–66.
[12]  Genzen JR, Krasowski MD (2007) Resident training in clinical chemistry. Clin Lab Med 27: 343–358; abstract vii.
[13]  Knoell DL, Johnston JS, Bao S, Kelley KA (2009) A genotyping exercise for pharmacogenetics in pharmacy practice. Am J Pharm Educ 73: 43.
[14]  Mazmanian PE, Davis DA (2002) Continuing medical education and the physician as a learner: guide to the evidence. JAMA 288: 1057–1060.
[15]  Ormond KE, Hudgins L, Ladd JM, Magnus DM, Greely HT, et al. (2011) Medical and graduate students' attitudes toward personal genomics. Genet Med 13: 400–408.
[16]  Vernez S, Salari K, Ormond KE, Lee SS (2013) Personal genome testing in medical education: student experiences with genotyping in the classroom. Genome Med 5: 24.
[17]  Sanderson SC, Wardle J (2008) Associations between anticipated reactions to genetic test results and interest in genetic testing: will self-selection reduce the potential for harm? Genet Test 12: 59–66.
[18]  Bloss CS, Schork NJ, Topol EJ (2011) Effect of direct-to-consumer genomewide profiling to assess disease risk. N Engl J Med 364: 524–534.
[19]  Sharp RR, Goldlust ME, Eng C (2011) Addressing gaps in physician education using personal genomic testing. Genet Med 13: 750–751.
[20]  Haga SB, Carrig MM, O'Daniel JM, Orlando LA, Killeya-Jones LA, et al. (2011) Genomic risk profiling: attitudes and use in personal and clinical care of primary care physicians who offer risk profiling. J Gen Intern Med 26: 834–840.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133