Existing approaches that quantify cytotoxic T cell responses rely on bulk or surrogate measurements which impede the direct identification of single activated T cells of interest. Single cell microscopy or flow cytometry methodologies typically rely on fluorescent labeling, which limits applicability to primary cells such as human derived T lymphocytes. Here, we introduce a quantitative method to track single T lymphocyte mediated cytotoxic events within a mixed population of cells using live cell interferometry (LCI), a label-free microscopy technique that maintains cell viability. LCI quantifies the mass distribution within individual cells by measuring the phase shift caused by the interaction of light with intracellular biomass. Using LCI, we imaged cytotoxic T cells killing cognate target cells. In addition to a characteristic target cell mass decrease of 20–60% over 1–4 h following attack by a T cell, there was a significant 4-fold increase in T cell mass accumulation rate at the start of the cytotoxic event and a 2–3 fold increase in T cell mass relative to the mass of unresponsive T cells. Direct, label-free measurement of CD8+ T and target cell mass changes provides a kinetic, quantitative assessment of T cell activation and a relatively rapid approach to identify specific, activated patient-derived T cells for applications in cancer immunotherapy.
References
[1]
Kalinski P, Nakamura Y, Watchmaker P, Giermasz A, Muthuswamy R, et al. (2006) Helper roles of NK and CD8+ T cells in the induction of tumor immunity. Polarized dendritic cells as cancer vaccines. Immunol Res 36: 137–146.
[2]
Tuma RA, Pamer EG (2002) Homeostasis of naive, effector and memory CD8 T cells. Curr Opin Immunol 14: 348–353.
[3]
Hobeika AC, Morse MA, Osada T, Ghanayem M, Niedzwiecki D, et al. (2005) Enumerating antigen-specific T-cell responses in peripheral blood: a comparison of peptide MHC Tetramer, ELISpot, and intracellular cytokine analysis. J Immunother 28: 63–72.
[4]
Malyguine A, Strobl S, Zaritskaya L, Baseler M, Shafer-Weaver K (2007) New approaches for monitoring CTL activity in clinical trials. Adv Exp Med Biol 601: 273–284.
[5]
Kwong GA, Radu CG, Hwang K, Shu CJ, Ma C, et al. (2009) Modular nucleic acid assembled p/MHC microarrays for multiplexed sorting of antigen-specific T cells. J Am Chem Soc 131: 9695–9703.
[6]
Ma C, Fan R, Ahmad H, Shi Q, Comin-Anduix B, et al. (2011) A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells. Nat Med 17: 738–743.
[7]
Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME (2008) Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8: 299–308.
[8]
Balagopalan L, Sherman E, Barr VA, Samelson LE (2011) Imaging techniques for assaying lymphocyte activation in action. Nat Rev Immunol 11: 21–33.
[9]
Delon J, Stoll S, Germain RN (2002) Imaging of T-cell interactions with antigen presenting cells in culture and in intact lymphoid tissue. Immunol Rev 189: 51–63.
[10]
Sauce D, Tonnelier N, Duperrier A, Petracca B, de Carvalho Bittencourt M, et al. (2002) Influence of ex vivo expansion and retrovirus-mediated gene transfer on primary T lymphocyte phenotype and functions. J Hematother Stem Cell Res 11: 929–940.
[11]
Tran KQ, Zhou J, Durflinger KH, Langhan MM, Shelton TE, et al. (2008) Minimally cultured tumor-infiltrating lymphocytes display optimal characteristics for adoptive cell therapy. J Immunother 31: 742–751.
[12]
Reed J, Chun J, Zangle TA, Kalim S, Hong JS, et al. (2011) Rapid, massively parallel single-cell drug response measurements via live cell interferometry. Biophys J 101: 1025–1031.
[13]
Reed J, Troke JJ, Schmit J, Han S, Teitell MA, et al. (2008) Live cell interferometry reveals cellular dynamism during force propagation. ACS Nano 2: 841–846.
[14]
Ross KFA (1967) Phase contrast and interference microscopy for cell biologists. London,: Edward Arnold. 238 p.
[15]
Johnson LA, Heemskerk B, Powell DJ Jr, Cohen CJ, Morgan RA, et al. (2006) Gene transfer of tumor-reactive TCR confers both high avidity and tumor reactivity to nonreactive peripheral blood mononuclear cells and tumor-infiltrating lymphocytes. J Immunol 177: 6548–6559.
[16]
Rathmell JC, Vander Heiden MG, Harris MH, Frauwirth KA, Thompson CB (2000) In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. Mol Cell 6: 683–692.
[17]
Tzur A, Moore JK, Jorgensen P, Shapiro HM, Kirschner MW (2011) Optimizing optical flow cytometry for cell volume-based sorting and analysis. PLoS One 6: e16053.
[18]
Sondergaard J, Nazarian R, Wang Q, Guo D, Hsueh T, et al. (2010) Differential sensitivity of melanoma cell lines with BRAFV600E mutation to the specific Raf inhibitor PLX4032. J Transl Med 8: 39.
[19]
Ghiglia DC, Pritt, M D. (1998) Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software: John Wiley & Sons. 493 p.
[20]
Crocker JC, Grier, D G (1996) Methods of Digital Video Microscopy for Colloidal Studies. J Colloid Interface Sci 179: 12.
[21]
Mir M, Wang Z, Shen Z, Bednarz M, Bashir R, et al. (2011) Optical measurement of cycle-dependent cell growth. Proc Natl Acad Sci U S A 108: 13124–13129.
[22]
Barer R (1952) Interference microscopy and mass determination. Nature 169: 366–367.
[23]
Fox CJ, Hammerman PS, Thompson CB (2005) Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol 5: 844–852.
[24]
Michalek RD, Rathmell JC (2010) The metabolic life and times of a T-cell. Immunol Rev 236: 190–202.
[25]
Maciver NJ, Jacobs SR, Wieman HL, Wofford JA, Coloff JL, et al. (2008) Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival. J Leukoc Biol 84: 949–957.
[26]
Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, et al. (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15: 5323–5337.
[27]
Elkord E, Rowbottom AW, Kynaston H, Williams PE (2006) Correlation between CD8+ T cells specific for prostate-specific antigen and level of disease in patients with prostate cancer. Clin Immunol 120: 91–98.
[28]
Whiteside TL (2004) Methods to monitor immune response and quality control. Dev Biol (Basel) 116: 219–228; discussion 229–236.
[29]
Wooldridge L, Lissina A, Cole DK, van den Berg HA, Price DA, et al. (2009) Tricks with tetramers: how to get the most from multimeric peptide-MHC. Immunology 126: 147–164.
[30]
Stone JD, Chervin AS, Kranz DM (2009) T-cell receptor binding affinities and kinetics: impact on T-cell activity and specificity. Immunology 126: 165–176.
[31]
Edwards LJ, Evavold BD (2011) T cell recognition of weak ligands: roles of signaling, receptor number, and affinity. Immunol Res 50: 39–48.
[32]
Tian S, Maile R, Collins EJ, Frelinger JA (2007) CD8+ T cell activation is governed by TCR-peptide/MHC affinity, not dissociation rate. J Immunol 179: 2952–2960.