全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Pro-Inflammatory Flagellin Proteins of Prevalent Motile Commensal Bacteria Are Variably Abundant in the Intestinal Microbiome of Elderly Humans

DOI: 10.1371/journal.pone.0068919

Full-Text   Cite this paper   Add to My Lib

Abstract:

Some Eubacterium and Roseburia species are among the most prevalent motile bacteria present in the intestinal microbiota of healthy adults. These flagellate species contribute “cell motility” category genes to the intestinal microbiome and flagellin proteins to the intestinal proteome. We reviewed and revised the annotation of motility genes in the genomes of six Eubacterium and Roseburia species that occur in the human intestinal microbiota and examined their respective locus organization by comparative genomics. Motility gene order was generally conserved across these loci. Five of these species harbored multiple genes for predicted flagellins. Flagellin proteins were isolated from R. inulinivorans strain A2-194 and from E. rectale strains A1-86 and M104/1. The amino-termini sequences of the R. inulinivorans and E. rectale A1-86 proteins were almost identical. These protein preparations stimulated secretion of interleukin-8 (IL-8) from human intestinal epithelial cell lines, suggesting that these flagellins were pro-inflammatory. Flagellins from the other four species were predicted to be pro-inflammatory on the basis of alignment to the consensus sequence of pro-inflammatory flagellins from the β- and γ- proteobacteria. Many fliC genes were deduced to be under the control of σ28. The relative abundance of the target Eubacterium and Roseburia species varied across shotgun metagenomes from 27 elderly individuals. Genes involved in the flagellum biogenesis pathways of these species were variably abundant in these metagenomes, suggesting that the current depth of coverage used for metagenomic sequencing (3.13–4.79 Gb total sequence in our study) insufficiently captures the functional diversity of genomes present at low (≤1%) relative abundance. E. rectale and R. inulinivorans thus appear to synthesize complex flagella composed of flagellin proteins that stimulate IL-8 production. A greater depth of sequencing, improved evenness of sequencing and improved metagenome assembly from short reads will be required to facilitate in silico analyses of complete complex biochemical pathways for low-abundance target species from shotgun metagenomes.

References

[1]  Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, et al. (2011) Enterotypes of the human gut microbiome. Nature 473: 174–180.
[2]  Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118: 229–241.
[3]  Swanson PA 2nd, Kumar A, Samarin S, Vijay-Kumar M, Kundu K, et al (2011) Enteric commensal bacteria potentiate epithelial restitution via reactive oxygen species-mediated inactivation of focal adhesion kinase phosphatases. Proc Natl Acad Sci U S A 108: 8803–8808.
[4]  Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122: 107–118.
[5]  Round JL, Mazmanian SK (2010) Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A 107: 12204–12209.
[6]  Round JL, Lee SM, Li J, Tran G, Jabri B, et al. (2011) The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332: 974–977.
[7]  Stappenbeck TS, Hooper LV, Gordon JI (2002) Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci U S A 99: 15451–15455.
[8]  Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34: 637–650.
[9]  Snyder LAS, Loman NJ, Futterer K, Pallen MJ (2009) Bacterial flagellar diversity and evolution: seek simplicity and distrust it? Trends Microbiol 17: 1–5.
[10]  Forde BM (2013) Genomics of commensal lactobacilli [PhD]. Cork: University College Cork. 290 p.
[11]  Pallen MJ, Matzke NJ (2006) From the origin of species to the origin of bacterial flagella. Nat Rev Microbiol 4: 784–790.
[12]  Yonekura K, Maki-Yonekura S, Namba K (2005) Building the atomic model for the bacterial flagellar filament by electron cryomicroscopy and image analysis. Structure 13: 407–412.
[13]  Erridge C, Duncan SH, Bereswill S, Heimesaat MM (2010) The induction of colitis and ileitis in mice is associated with marked increases in intestinal concentrations of stimulants of TLRs 2, 4, and 5. PloS one 5: e9125.
[14]  Kolmeder CA, de Been M, Nikkila J, Ritamo I, Matto J, et al. (2012) Comparative metaproteomics and diversity analysis of human intestinal microbiota testifies for its temporal stability and expression of core functions. PloS one 7: e29913.
[15]  Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, et al. (2009) A core gut microbiome in obese and lean twins. Nature 457: 480–484.
[16]  Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, et al. (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59–65.
[17]  Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H, et al. (2007) Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14: 169–181.
[18]  Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, et al. (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410: 1099–1103.
[19]  Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL (2001) Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol 167: 1882–1885.
[20]  Carvalho FA, Nalbantoglu I, Aitken JD, Uchiyama R, Su Y, et al. (2012) Cytosolic flagellin receptor NLRC4 protects mice against mucosal and systemic challenges. Mucosal Immunol 5: 288–298.
[21]  Claesson MJ, Cusack S, O'Sullivan O, Greene-Diniz R, de Weerd H, et al. (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A 108 Suppl 14586–4591.
[22]  Aminov RI, Walker AW, Duncan SH, Harmsen HJ, Welling GW, et al. (2006) Molecular diversity, cultivation, and improved detection by fluorescent in situ hybridization of a dominant group of human gut bacteria related to Roseburia spp. or Eubacterium rectale. Appl Environ Microbiol 72: 6371–6376.
[23]  Ahmed S, Macfarlane GT, Fite A, McBain AJ, Gilbert P, et al. (2007) Mucosa-associated bacterial diversity in relation to human terminal ileum and colonic biopsy samples. Appl Environ Microbiol 73: 7435–7442.
[24]  Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, et al. (2011) Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 5: 220–230.
[25]  Duncan SH, Hold GL, Barcenilla A, Stewart CS, Flint HJ (2002) Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human faeces. Int J Syst Evol Microbiol 52: 1615–1620.
[26]  Duncan SH, Belenguer A, Holtrop G, Johnstone AM, Flint HJ, et al. (2007) Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol 73: 1073–1078.
[27]  Lakhdari O, Tap J, Beguet-Crespel F, Le Roux K, de Wouters T, et al. (2011) Identification of NF-kappaB modulation capabilities within human intestinal commensal bacteria. J Biomed Biotechnol 2011: 282356.
[28]  Lodes MJ, Cong Y, Elson CO, Mohamath R, Landers CJ, et al. (2004) Bacterial flagellin is a dominant antigen in Crohn disease. J Clin Invest 113: 1296–1306.
[29]  Duck LW, Walter MR, Novak J, Kelly D, Tomasi M, et al. (2007) Isolation of flagellated bacteria implicated in Crohn's disease. Inflamm Bowel Dis 13: 1191–1201.
[30]  Euzeby J (2010) Lachnospiraceae. http://www.bacterio.cict.fr/bacdico/ll/l?achnospiraceae.html.
[31]  Duncan SH, Aminov RI, Scott KP, Louis P, Stanton TB, et al. (2006) Proposal of Roseburia faecis sp. nov., Roseburia hominis sp. nov. and Roseburia inulinivorans sp. nov., based on isolates from human faeces. Int J Syst Evol Microbiol 56: 2437–2441.
[32]  Wade WG (2006) The genus Eubacterium and related genera. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E, editors. The Prokaryotes. New York: Springer. 823–835.
[33]  Euzeby JP (1997) List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. Int J Syst Bacteriol 47: 590–592.
[34]  Martin JH, Savage DC (1985) Purification and characterisation of flagella from Roseburia cecicola, an obligately anaerobic bacterium. J Gen Microbiol 131: 2075–2078.
[35]  Wade WG (2009) Genus I. Eubacterium Prevot 1938, 294AL. In: De Vos P, Garrity GM, Jones D, Kuieg NR, Ludwig W, et al.., editors. Bergey's Manual of Systematic Bacteriology. Second ed. New York: Springer. 865–891.
[36]  Kalmokoff ML, Allard S, Austin JW, Whitford MF, Hefford MA, et al. (2000) Biochemical and genetic characterization of the flagellar filaments from the rumen anaerobe Butyrivibrio fibrisolvens OR77. Anaerobe 6: 93–109.
[37]  Andersen-Nissen E, Smith KD, Strobe KL, Barrett SL, Cookson BT, et al. (2005) Evasion of Toll-like receptor 5 by flagellated bacteria. Proc Natl Acad Sci U S A 102: 9247–9252.
[38]  Smith KD, Andersen-Nissen E, Hayashi F, Strobe K, Bergman MA, et al. (2003) Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat Immunol 4: 1247–1253.
[39]  Neville BA, Forde BM, Claesson MJ, Darby T, Coghlan A, et al. (2012) Characterization of pro-inflammatory flagellin proteins produced by Lactobacillus ruminis and related motile lactobacilli. PLoS One 7: e40592.
[40]  Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, et al. (2012) Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods 9: 811–814.
[41]  Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, et al. (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488: 178–184.
[42]  Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, et al. (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496–512.
[43]  Lander ES, Waterman MS (1988) Genomic mapping by fingerprinting random clones: a mathematical analysis. Genomics 2: 231–239.
[44]  NCBI Cell Motility COG category.
[45]  Stanton TB, Savage DC (1894) Motility as a factor in bowel colonization by Roseburia cecicola, an obligately anaerobic bacterium from the mouse caecum. J Gen Microbiol 130: 173–183.
[46]  Scott KP, Martin JC, Chassard C, Clerget M, Potrykus J, et al. (2011) Substrate-driven gene expression in Roseburia inulinivorans: importance of inducible enzymes in the utilization of inulin and starch. Proc Natl Acad Sci U S A 108 Suppl 14672–4679.
[47]  Wullaert A, Bonnet MC, Pasparakis M (2011) NF-κB in the regulation of epithelial homeostasis and inflammation. Cell Res 21: 146–158.
[48]  Vijay-Kumar M, Wu H, Jones R, Grant G, Babbin B, et al. (2006) Flagellin suppresses epithelial apoptosis and limits disease during enteric infection. Am J Pathol 169: 1686–1700.
[49]  Smith TG, Hoover TR (2009) Deciphering bacterial flagellar gene regulatory networks in the genomic era. Adv Appl Microbiol 67: 257–295.
[50]  Brown J, Faulds-Pain A, Aldridge P (2009) The coordination of flagellar gene expression and the flagellar assembly pathway. In: Jarrell KF, editor. Pili and flagella, current research and future trends. Norfolk, UK: Caister Academic Press. 99–120.
[51]  Zaslaver A, Mayo A, Ronen M, Alon U (2006) Optimal gene partition into operons correlates with gene functional order. Phys Biol 3: 183–189.
[52]  Kalir S, McClure J, Pabbaraju K, Southward C, Ronen M, et al. (2001) Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. Science 292: 2080–2083.
[53]  Tamames J (2001) Evolution of gene order conservation in prokaryotes. Genome Biol 2: 00020.00021–00020.00011.
[54]  Mukherjee S, Yakhnin H, Kysela D, Sokoloski J, Babitzke P, et al. (2011) CsrA-FliW interaction governs flagellin homeostasis and a checkpoint on flagellar morphogenesis in Bacillus subtilis. Mol Microbiol 82: 447–461.
[55]  Abhayawardhane Y, Stewart GC (1995) Bacillus subtilis possesses a second determinant with extensive sequence similarity to the Escherichia coli mreB morphogene. J Bacteriol 177: 765–773.
[56]  Nambu T, Minamino T, Macnab RM, Kutsukake K (1999) Peptidoglycan-hydrolyzing activity of the FlgJ protein, essential for flagellar rod formation in Salmonella typhimurium. J Bacteriol 181: 1555–1561.
[57]  Bergara F, Ibarra C, Iwamasa J, Patarroyo JC, Aguilera R, et al. (2003) CodY is a nutritional repressor of flagellar gene expression in Bacillus subtilis. J Bacteriol 185: 3118–3126.
[58]  Yakhnin H, Pandit P, Petty TJ, Baker CS, Romeo T, et al. (2007) CsrA of Bacillus subtilis regulates translation initiation of the gene encoding the flagellin protein (hag) by blocking ribosome binding. Mol Microbiol 64: 1605–1620.
[59]  Wei BL, Brun-Zinkernagel AM, Simecka JW, Pruss BM, Babitzke P, et al. (2001) Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol Microbiol 40: 245–256.
[60]  Dalebroux ZD, Swanson MS (2012) ppGpp: magic beyond RNA polymerase. Nat Rev Microbiol 10: 203–212.
[61]  Douillard FP, Ryan KA, Caly DL, Hinds J, Witney AA, et al. (2008) Posttranscriptional regulation of flagellin synthesis in Helicobacter pylori by the RpoN chaperone HP0958. J Bacteriol 190: 7975–7984.
[62]  Stanton TB, Duncan SH, Flint HJ (2009) Genus XVI. Roseburia Stanton and Savage 1983a, 626. In: Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, et al.., editors. Bergey's manual of systematic bacteriology. New York: Springer 954–956.
[63]  Warnecke F, Hugenholtz P (2007) Building on basic metagenomics with complementary technologies. Genome Biol 8.
[64]  De Filippo C, Ramazzotti M, Fontana P, Cavalieri D (2012) Bioinformatic approaches for functional annotation and pathway inference in metagenomics data. Brief Bioinform 13: 696–710.
[65]  Barcenilla A, Pryde SE, Martin JC, Duncan SH, Stewart CS, et al. (2000) Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 66: 1654–1661.
[66]  Louis P, Duncan SH, McCrae SI, Millar J, Jackson MS, et al. (2004) Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J Bacteriol 186: 2099–2106.
[67]  Miyazaki K, Martin JC, Marinsek-Logar R, Flint HJ (1997) Degradation and utilization of xylans by the rumen anaerobe Prevotella bryantii (formerly P. ruminicola subsp. brevis) B(1)4. Anaerobe 3: 373–381.
[68]  Bryant MP (1972) Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr 25: 1324–1328.
[69]  Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357–359.
[70]  Culhane AC, Thioulouse J, Perriere G, Higgins DG (2005) MADE4: an R package for multivariate analysis of gene expression data. Bioinformatics 21: 2789–2790.
[71]  Beatson SA, Minamino T, Pallen MJ (2006) Variation in bacterial flagellins: from sequence to structure. Trends Microbiol 14: 151–155.
[72]  Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, et al. (2000) Artemis: sequence visualization and annotation. Bioinformatics 16: 944–945.
[73]  Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, et al.. (2008) The metagenomics RAST server–a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics.
[74]  Delcher A, Phillippy A, Carlton J, Salzberg S (2002) Fast algorithms for large-scale genome alignment and comparision. Nucleic Acids Res 30: 2478–2483.
[75]  Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, et al. (2004) Versatile and open software for comparing large genomes. Genome Biol 5: R12.
[76]  Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797.
[77]  Carver T, Berriman M, Tivey A, Patel C, Bohme U, et al. (2008) Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics 24: 2672–2676.
[78]  Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410.
[79]  Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, et al. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59: 307–321.
[80]  Keane TM, Creevey CJ, Pentony MM, Naughton TJ, McLnerney JO (2006) Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol Biol 6: 29.
[81]  Chen H, Bjerknes M, Kumar R, Jay E (1994) Determination of the optimal aligned spacing between the Shine-Dalgarno sequence and the translation initiation codon of Escherichia coli mRNAs. Nucleic Acids Res 22: 4953–4957.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133