Healthy corneal endothelium is essential for maintaining corneal clarity, as the damage of corneal endothelial cells and loss of cell count causes severe visual impairment. Corneal transplantation is currently the only therapy for severe corneal disorders. The greatly limited proliferative ability of human corneal endothelial cells (HCECs), even in vitro, has challenged researchers to establish efficient techniques for the cultivating HCECs, a pivotal issue for clinical applications. The aim of this study was to evaluate conditioned medium (CM) obtained from human bone marrow-derived mesenchymal stem cells (MSCs) (MSC-CM) for use as a consistent expansion protocol of HCECs. When HCECs were maintained in the presence of MSC-CM, cell morphology assumed a hexagonal shape similar to corneal endothelial cells in vivo, as opposed to the irregular cell shape observed in control cultures in the absence of MSC-CM. They also maintained the functional protein phenotypes; ZO-1 and Na+/K+-ATPase were localized at the intercellular adherent junctions and pump proteins of corneal endothelium were accordingly expressed. In comparison to the proliferative potential observed in the control cultures, HCECs maintained in MSC-CM were found to have more than twice as many Ki67-positive cells and a greatly increased incorporation of BrdU into DNA. MSC-CM further facilitated the cell migration of HCECs. Lastly, the mechanism of cell proliferation mediated by MSC-CM was investigated, and phosphorylation of Akt and ERK1/2 was observed in HCECs after exposure to MSC-CM. The inhibitor to PI 3-kinase maintained the level of p27Kip1 for up to 24 hours and greatly blocked the expression of cyclin D1 and D3 during the early G1 phase, leading to the reduction of cell density. These findings indicate that MSC-CM not only stimulates the proliferation of HCECs by regulating the G1 proteins of the cell cycle but also maintains the characteristic differentiated phenotypes necessary for the endothelial functions.
References
[1]
Bourne WM (1998) Clinical estimation of corneal endothelial pump function. Trans Am Ophthalmol Soc 96: : 229–239; discussion 239–242.
[2]
Joyce NC (2003) Proliferative capacity of the corneal endothelium. Prog Retin Eye Res 22: 359–389.
[3]
Kaufman HE, Katz JI (1977) Pathology of the corneal endothelium. Invest Ophthalmol Vis Sci 16: 265–268.
[4]
Edelhauser HF (2000) The resiliency of the corneal endothelium to refractive and intraocular surgery. Cornea 19: 263–273.
[5]
Afshari NA, Pittard AB, Siddiqui A, Klintworth GK (2006) Clinical study of Fuchs corneal endothelial dystrophy leading to penetrating keratoplasty: a 30-year experience. Arch Ophthalmol 124: 777–780.
Gorovoy MS (2006) Descemet-stripping automated endothelial keratoplasty. Cornea 25: 886–889.
[8]
Melles GR, Ong TS, Ververs B, van der Wees J (2008) Preliminary clinical results of Descemet membrane endothelial keratoplasty. Am J Ophthalmol 145: 222–227.
[9]
Price FW Jr, Price MO (2005) Descemet's stripping with endothelial keratoplasty in 50 eyes: a refractive neutral corneal transplant. J Refract Surg 21: 339–345.
[10]
Price MO, Price FW Jr (2010) Endothelial keratoplasty - a review. Clin Experiment Ophthalmol 38: 128–140.
[11]
Mehta JS, Chua J, Poh R, Beuerman RW, Tan D (2008) Primary graft failure after Descemet-stripping automated endothelial keratoplasty: clinico-pathological study. Cornea 27: 722–726.
[12]
Terry MA, Chen ES, Shamie N, Hoar KL, Friend DJ (2008) Endothelial cell loss after Descemet's stripping endothelial keratoplasty in a large prospective series. Ophthalmology 115: : 488–496 e483.
[13]
Ishino Y, Sano Y, Nakamura T, Connon CJ, Rigby H, et al. (2004) Amniotic membrane as a carrier for cultivated human corneal endothelial cell transplantation. Invest Ophthalmol Vis Sci 45: 800–806.
[14]
Mimura T, Yamagami S, Yokoo S, Usui T, Tanaka K, et al. (2004) Cultured human corneal endothelial cell transplantation with a collagen sheet in a rabbit model. Invest Ophthalmol Vis Sci 45: 2992–2997.
[15]
Sumide T, Nishida K, Yamato M, Ide T, Hayashida Y, et al. (2006) Functional human corneal endothelial cell sheets harvested from temperature-responsive culture surfaces. FASEB J 20: 392–394.
[16]
Koizumi N, Sakamoto Y, Okumura N, Okahara N, Tsuchiya H, et al. (2007) Cultivated corneal endothelial cell sheet transplantation in a primate model. Invest Ophthalmol Vis Sci 48: 4519–4526.
[17]
Okumura N, Koizumi N, Ueno M, Sakamoto Y, Takahashi H, et al. (2012) ROCK inhibitor converts corneal endothelial cells into a phenotype capable of regenerating in vivo endothelial tissue. Am J Pathol 181: 268–277.
[18]
Joyce NC, Navon SE, Roy S, Zieske JD (1996) Expression of cell cycle-associated proteins in human and rabbit corneal endothelium in situ. Invest Ophthalmol Vis Sci 37: 1566–1575.
[19]
Okumura N, Ueno M, Koizumi N, Sakamoto Y, Hirata K, et al. (2009) Enhancement on primate corneal endothelial cell survival in vitro by a ROCK inhibitor. Invest Ophthalmol Vis Sci 50: 3680–3687.
[20]
Lee JG, Song JS, Smith RE, Kay EP (2011) Human corneal endothelial cells employ phosphorylation of p27(Kip1) at both Ser10 and Thr187 sites for FGF-2-mediated cell proliferation via PI 3-kinase. Invest Ophthalmol Vis Sci 52: 8216–8223.
[21]
Peh GS, Toh KP, Wu FY, Tan DT, Mehta JS (2011) Cultivation of human corneal endothelial cells isolated from paired donor corneas. PLoS One 6: e28310.
[22]
Peh GS, Beuerman RW, Colman A, Tan DT, Mehta JS (2011) Human corneal endothelial cell expansion for corneal endothelium transplantation: an overview. Transplantation 91: 811–819.
[23]
Okumura N, Kay E, Nakahara M, Hamuro J, Kinoshita S, et al. (2013) Inhibition of TGF-β signaling enables human corneal endothelial cell expansion in vitro for use in regenerative medicine. PLoS One 8: e58000.
[24]
Hayashi Y, Chan T, Warashina M, Fukuda M, Ariizumi T, et al. (2010) Reduction of N-glycolylneuraminic acid in human induced pluripotent stem cells generated or cultured under feeder- and serum-free defined conditions. PLoS One 5: e14099.
[25]
Phinney DG, Hill K, Michelson C, DuTreil M, Hughes C, et al. (2006) Biological activities encoded by the murine mesenchymal stem cell transcriptome provide a basis for their developmental potential and broad therapeutic efficacy. Stem Cells 24: 186–198.
[26]
Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair--current views. Stem Cells 25: 2896–2902.
[27]
Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, et al. (2004) Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 94: 678–685.
[28]
Boomsma RA, Geenen DL (2012) Mesenchymal stem cells secrete multiple cytokines that promote angiogenesis and have contrasting effects on chemotaxis and apoptosis. PLoS One 7: e35685.
[29]
Zhu C, Joyce NC (2004) Proliferative response of corneal endothelial cells from young and older donors. Invest Ophthalmol Vis Sci 45: 1743–1751.
[30]
Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6: 331–343.
[31]
Koizumi N, Fullwood NJ, Bairaktaris G, Inatomi T, Kinoshita S, et al. (2000) Cultivation of corneal epithelial cells on intact and denuded human amniotic membrane. Invest Ophthalmol Vis Sci 41: 2506–2513.
[32]
Zhu YT, Hayashida Y, Kheirkhah A, He H, Chen SY, et al. (2008) Characterization and comparison of intercellular adherent junctions expressed by human corneal endothelial cells in vivo and in vitro. Invest Ophthalmol Vis Sci 49: 3879–3886.
[33]
Lee JG, Kay EP (2006) FGF-2-induced wound healing in corneal endothelial cells requires Cdc42 activation and Rho inactivation through the phosphatidylinositol 3-kinase pathway. Invest Ophthalmol Vis Sci 47: 1376–1386.
[34]
Lee JG, Kay EP (2007) Two populations of p27 use differential kinetics to phosphorylate Ser-10 and Thr-187 via phosphatidylinositol 3-Kinase in response to fibroblast growth factor-2 stimulation. J Biol Chem 282: 6444–6454.
[35]
Tan DT, Dart JK, Holland EJ, Kinoshita S (2012) Corneal transplantation. Lancet 379: 1749–1761.
[36]
Anshu A, Price MO, Tan DT, Price FW Jr (2012) Endothelial keratoplasty: a revolution in evolution. Surv Ophthalmol 57: 236–252.
[37]
Melles GR, Lander F, van Dooren BT, Pels E, Beekhuis WH (2000) Preliminary clinical results of posterior lamellar keratoplasty through a sclerocorneal pocket incision. Ophthalmology 107: :1850–1856;discussion 1857.
[38]
Lu X, Chen D, Liu Z, Li C, Liu Y, et al. (2010) Enhanced survival in vitro of human corneal endothelial cells using mouse embryonic stem cell conditioned medium. Mol Vis 16: 611–622.
[39]
Yokoi T, Seko Y, Yokoi T, Makino H, Hatou S, et al. (2012) Establishment of functioning human corneal endothelial cell line with high growth potential. PLoS One 7: e29677.