全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Elimination of Metastatic Melanoma Using Gold Nanoshell-Enabled Photothermal Therapy and Adoptive T Cell Transfer

DOI: 10.1371/journal.pone.0069073

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ablative treatments such as photothermal therapy (PTT) are attractive anticancer strategies because they debulk accessible tumor sites while simultaneously priming antitumor immune responses. However, the immune response following thermal ablation is often insufficient to treat metastatic disease. Here we demonstrate that PTT induces the expression of proinflammatory cytokines and chemokines and promotes the maturation of dendritic cells within tumor-draining lymph nodes, thereby priming antitumor T cell responses. Unexpectedly, however, these immunomodulatory effects were not beneficial to overall antitumor immunity. We found that PTT promoted the infiltration of secondary tumor sites by CD11b+Ly-6G/C+ myeloid-derived suppressor cells, consequently failing to slow the growth of poorly immunogenic B16-F10 tumors and enhancing the growth of distant lung metastases. To exploit the beneficial effects of PTT activity against local tumors and on antitumor immunity whilst avoiding the adverse consequences, we adoptively transferred gp100-specific pmel T cells following PTT. The combination of local control by PTT and systemic antitumor immune reactivity provided by adoptively transferred T cells prevented primary tumor recurrence post-ablation, inhibited tumor growth at distant sites, and abrogated the outgrowth of lung metastases. Hence, the combination of PTT and systemic immunotherapy prevented the adverse effects of PTT on metastatic tumor growth and optimized overall tumor control.

References

[1]  Soanes WA, Ablin RJ, Gonder MJ (1970) Remission of metastatic lesions following cryosurgery in prostatic cancer: immunologic considerations. The Journal of urology 104: 154–159. Available: http://www.ncbi.nlm.nih.gov/pubmed/49876?66. Accessed 3 April 2013.
[2]  Rao P, Escudier B, De Baere T (2011) Spontaneous regression of multiple pulmonary metastases after radiofrequency ablation of a single metastasis. Cardiovascular and interventional radiology 34: 424–430. Available: http://www.ncbi.nlm.nih.gov/pubmed/20532?778. Accessed 3 April 2013.
[3]  Seung SK, Curti BD, Crittenden M, Walker E, Coffey T, et al. (2012) Phase 1 study of stereotactic body radiotherapy and interleukin-2– tumor and immunological responses. Science translational medicine 4: 137ra74. Available: http://www.ncbi.nlm.nih.gov/pubmed/22674?552. Accessed 3 April 2013.
[4]  Kim YH, Gratzinger D, Harrison C, Brody JD, Czerwinski DK, et al. (2012) In situ vaccination against mycosis fungoides by intratumoral injection of a TLR9 agonist combined with radiation: a phase 1/2 study. Blood 119: 355–363. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=3257006&tool=pmcentrez?&rendertype=abstract. Accessed 22 March 2013.
[5]  Widenmeyer M, Shebzukhov Y, Haen SP, Schmidt D, Clasen S, et al. (2011) Analysis of tumor antigen-specific T cells and antibodies in cancer patients treated with radiofrequency ablation. International journal of cancer Journal international du cancer 128: 2653–2662. Available: http://www.ncbi.nlm.nih.gov/pubmed/20715?115. Accessed 3 April 2013.
[6]  Huang XF, Ren W, Rollins L, Pittman P, Shah M, et al. (2003) A broadly applicable, personalized heat shock protein-mediated oncolytic tumor vaccine. Cancer research 63: 7321–7329. Available: http://www.ncbi.nlm.nih.gov/pubmed/14612?530. Accessed 3 April 2013.
[7]  Yang W-L, Nair DG, Makizumi R, Gallos G, Ye X, et al. (2004) Heat shock protein 70 is induced in mouse human colon tumor xenografts after sublethal radiofrequency ablation. Annals of surgical oncology 11: 399–406. Available: http://www.ncbi.nlm.nih.gov/pubmed/15070?600. Accessed 3 April 2013.
[8]  Rai R, Richardson C, Flecknell P, Robertson H, Burt A, et al. (2005) Study of apoptosis and heat shock protein (HSP) expression in hepatocytes following radiofrequency ablation (RFA). The Journal of surgical research 129: 147–151. Available: http://www.ncbi.nlm.nih.gov/pubmed/15975?593. Accessed 3 April 2013.
[9]  Liu Q, Zhai B, Yang W, Yu L-X, Dong W, et al. (2009) Abrogation of local cancer recurrence after radiofrequency ablation by dendritic cell-based hyperthermic tumor vaccine. Molecular therapy: the journal of the American Society of Gene Therapy 17: 2049–2057. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2814395&tool=pmcentrez?&rendertype=abstract. Accessed 3 April 2013.
[10]  Yang D, Chen Q, Yang H, Tracey KJ, Bustin M, et al. (2007) High mobility group box-1 protein induces the migration and activation of human dendritic cells and acts as an alarmin. Journal of leukocyte biology 81: 59–66. Available: http://www.ncbi.nlm.nih.gov/pubmed/16966?386. Accessed 3 April 2013.
[11]  Gallucci S, Lolkema M, Matzinger P (1999) Natural adjuvants: endogenous activators of dendritic cells. Nature medicine 5: 1249–1255. Available: http://www.ncbi.nlm.nih.gov/pubmed/10545?990. Accessed 3 April 2013.
[12]  Kepp O, Tesniere A, Schlemmer F, Michaud M, Senovilla L, et al. (2009) Immunogenic cell death modalities and their impact on cancer treatment. Apoptosis: an international journal on programmed cell death 14: 364–375. Available: http://www.ncbi.nlm.nih.gov/pubmed/19145?485. Accessed 14 March 2013.
[13]  Shi Y, Zheng W, Rock KL (2000) Cell injury releases endogenous adjuvants that stimulate cytotoxic T cell responses. Proceedings of the National Academy of Sciences of the United States of America 97: 14590–14595. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=18963&tool=pmcentrez&r?endertype=abstract. Accessed 3 April 2013.
[14]  Sauter B, Albert ML, Francisco L, Larsson M, Somersan S, et al. (2000) Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. The Journal of experimental medicine 191: 423–434. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2195816&tool=pmcentrez?&rendertype=abstract. Accessed 3 April 2013.
[15]  Castano AP, Mroz P, Hamblin MR (2006) Photodynamic therapy and anti-tumour immunity. Nature reviews Cancer 6: 535–545. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2933780&tool=pmcentrez?&rendertype=abstract. Accessed 3 April 2013.
[16]  Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, et al. (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proceedings of the National Academy of Sciences of the United States of America 100: 13549–13554. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=263851&tool=pmcentrez&?rendertype=abstract. Accessed 3 April 2013.
[17]  O'Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer letters 209: 171–176. Available: http://www.ncbi.nlm.nih.gov/pubmed/15159?019. Accessed 14 March 2013.
[18]  Overwijk WW, Tsung A, Irvine KR, Parkhurst MR, Goletz TJ, et al. (1998) gp100/pmel 17 is a murine tumor rejection antigen: induction of “self”-reactive, tumoricidal T cells using high-affinity, altered peptide ligand. The Journal of experimental medicine 188: 277–286. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2212458&tool=pmcentrez?&rendertype=abstract. Accessed 3 April 2013.
[19]  Song X-T, Turnis ME, Zhou X, Zhu W, Hong B-X, et al. (2011) A Th1-inducing adenoviral vaccine for boosting adoptively transferred T cells. Molecular therapy: the journal of the American Society of Gene Therapy 19: 211–217. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=3017450&tool=pmcentrez?&rendertype=abstract. Accessed 3 April 2013.
[20]  Hanks BA, Jiang J, Singh RAK, Song W, Barry M, et al. (2005) Re-engineered CD40 receptor enables potent pharmacological activation of dendritic-cell cancer vaccines in vivo. Nature medicine 11: 130–137. Available: http://www.ncbi.nlm.nih.gov/pubmed/15665?830. Accessed 3 April 2013.
[21]  Prevo BG, Esakoff SA, Mikhailovsky A, Zasadzinski JA (2008) Scalable routes to gold nanoshells with tunable sizes and response to near-infrared pulsed-laser irradiation. Small (Weinheim an der Bergstrasse, Germany) 4: 1183–1195. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2692070&tool=pmcentrez?&rendertype=abstract. Accessed 3 April 2013.
[22]  Gottschalk S, Edwards OL, Sili U, Huls MH, Goltsova T, et al. (2003) Generating CTLs against the subdominant Epstein-Barr virus LMP1 antigen for the adoptive immunotherapy of EBV-associated malignancies. Blood 101: 1905–1912. Available: http://www.ncbi.nlm.nih.gov/pubmed/12411?306. Accessed 3 April 2013.
[23]  Turnis ME, Song X-T, Bear A, Foster AE, Gottschalk S, et al. (2010) IRAK-M removal counteracts dendritic cell vaccine deficits in migration and longevity. The Journal of Immunology 185: 4223–4232 Available: http://www.ncbi.nlm.nih.gov/pubmed/20817?880.
[24]  Finnerty CC, Przkora R, Herndon DN, Jeschke MG (2009) Cytokine expression profile over time in burned mice. Cytokine 45: 20–25. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2668870&tool=pmcentrez?&rendertype=abstract. Accessed 3 April 2013.
[25]  Agay D, Andriollo-Sanchez M, Claeyssen R, Touvard L, Denis J, et al. (2008) Interleukin-6, TNF-alpha and interleukin-1 beta levels in blood and tissue in severely burned rats. European cytokine network 19: 1–7. Available: http://www.ncbi.nlm.nih.gov/pubmed/18299?267. Accessed 3 April 2013.
[26]  Waitz R, Solomon SB, Petre EN, Trumble AE, Fassò M, et al. (2012) Potent induction of tumor immunity by combining tumor cryoablation with anti-CTLA-4 therapy. Cancer research 72: 430–439. Available: http://www.ncbi.nlm.nih.gov/pubmed/22108?823. Accessed 3 April 2013.
[27]  Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nature medicine 10: 909–915. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=1435696&tool=pmcentrez?&rendertype=abstract. Accessed 3 April 2013.
[28]  Wang L, Yi T, Kortylewski M, Pardoll DM, Zeng D, et al. (2009) IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. The Journal of experimental medicine 206: 1457–1464. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2715087&tool=pmcentrez?&rendertype=abstract. Accessed 3 April 2013.
[29]  Park EJ, Lee JH, Yu G-Y, He G, Ali SR, et al. (2010) Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140: 197–208. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2836922&tool=pmcentrez?&rendertype=abstract. Accessed 3 April 2013.
[30]  Albini A, Tosetti F, Benelli R, Noonan DM (2005) Tumor inflammatory angiogenesis and its chemoprevention. Cancer research 65: 10637–10641. Available: http://www.ncbi.nlm.nih.gov/pubmed/16322?203. Accessed 3 April 2013.
[31]  Cuenca AG, Delano MJ, Kelly-Scumpia KM, Moreno C, Scumpia PO, et al. (n.d.) A paradoxical role for myeloid-derived suppressor cells in sepsis and trauma. Molecular medicine (Cambridge, Mass) 17: 281–292. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=3060988&tool=pmcentrez?&rendertype=abstract. Accessed 3 April 2013.
[32]  Song X, Krelin Y, Dvorkin T, Bjorkdahl O, Segal S, et al. (2005) CD11b+/Gr-1+ immature myeloid cells mediate suppression of T cells in mice bearing tumors of IL-1beta-secreting cells. Journal of immunology (Baltimore, Md: 1950) 175: 8200–8208. Available: http://www.ncbi.nlm.nih.gov/pubmed/16339?559. Accessed 3 April 2013.
[33]  Bunt SK, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S (2006) Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. Journal of immunology (Baltimore, Md: 1950) 176: 284–290. Available: http://www.ncbi.nlm.nih.gov/pubmed/16365?420. Accessed 3 April 2013.
[34]  Bunt SK, Yang L, Sinha P, Clements VK, Leips J, et al. (2007) Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer research 67: 10019–10026. Available: http://www.ncbi.nlm.nih.gov/pubmed/17942?936. Accessed 3 April 2013.
[35]  Waight JD, Hu Q, Miller A, Liu S, Abrams SI (2011) Tumor-derived G-CSF facilitates neoplastic growth through a granulocytic myeloid-derived suppressor cell-dependent mechanism. PloS one 6: e27690. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=3218014&tool=pmcentrez?&rendertype=abstract. Accessed 3 April 2013.
[36]  Menetrier-Caux C, Montmain G, Dieu MC, Bain C, Favrot MC, et al. (1998) Inhibition of the differentiation of dendritic cells from CD34(+) progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood 92: 4778–4791. Available: http://www.ncbi.nlm.nih.gov/pubmed/98455?45. Accessed 3 April 2013.
[37]  Serafini P, Carbley R, Noonan KA, Tan G, Bronte V, et al. (2004) High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer research 64: 6337–6343. Available: http://www.ncbi.nlm.nih.gov/pubmed/15342?423. Accessed 3 April 2013.
[38]  Bronte V, Chappell DB, Apolloni E, Cabrelle A, Wang M, et al. (1999) Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. Journal of immunology (Baltimore, Md: 1950) 162: 5728–5737. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2228333&tool=pmcentrez?&rendertype=abstract. Accessed 3 April 2013.
[39]  Fu YX, Watson G, Jimenez JJ, Wang Y, Lopez DM (1990) Expansion of immunoregulatory macrophages by granulocyte-macrophage colony-stimulating factor derived from a murine mammary tumor. Cancer research 50: 227–234. Available: http://www.ncbi.nlm.nih.gov/pubmed/21368?04. Accessed 3 April 2013.
[40]  Huang B, Lei Z, Zhao J, Gong W, Liu J, et al. (2007) CCL2/CCR2 pathway mediates recruitment of myeloid suppressor cells to cancers. Cancer letters 252: 86–92. Available: http://www.ncbi.nlm.nih.gov/pubmed/17257?744. Accessed 3 April 2013.
[41]  Den Brok MHMGM, Sutmuller RPM, Nierkens S, Bennink EJ, Toonen LWJ, et al. (2006) Synergy between in situ cryoablation and TLR9 stimulation results in a highly effective in vivo dendritic cell vaccine. Cancer research 66: 7285–7292. Available: http://www.ncbi.nlm.nih.gov/pubmed/16849?578. Accessed 3 April 2013.
[42]  Redondo P, Del Olmo J, López-Diaz de Cerio A, Inoges S, Marquina M, et al. (2007) Imiquimod enhances the systemic immunity attained by local cryosurgery destruction of melanoma lesions. The Journal of investigative dermatology 127: 1673–1680. Available: http://www.ncbi.nlm.nih.gov/pubmed/17380?112. Accessed 3 April 2013.
[43]  Habibi M, Kmieciak M, Graham L, Morales JK, Bear HD, et al. (2009) Radiofrequency thermal ablation of breast tumors combined with intralesional administration of IL-7 and IL-15 augments anti-tumor immune responses and inhibits tumor development and metastasis. Breast cancer research and treatment 114: 423–431. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2649692&tool=pmcentrez?&rendertype=abstract. Accessed 3 April 2013.
[44]  Castano AP, Mroz P, Wu MX, Hamblin MR (2008) Photodynamic therapy plus low-dose cyclophosphamide generates antitumor immunity in a mouse model. Proceedings of the National Academy of Sciences of the United States of America 105: 5495–5500. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2291083&tool=pmcentrez?&rendertype=abstract. Accessed 3 April 2013.
[45]  Sakaguchi S (2005) Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nature immunology 6: 345–352. Available: http://www.ncbi.nlm.nih.gov/pubmed/15785?760. Accessed 3 April 2013.
[46]  Gajewski TF (2007) Failure at the effector phase: immune barriers at the level of the melanoma tumor microenvironment. Clinical cancer research: an official journal of the American Association for Cancer Research 13: 5256–5261. Available: http://www.ncbi.nlm.nih.gov/pubmed/17875?753. Accessed 3 April 2013.
[47]  Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, et al. (2005) Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 23: 2346–2357. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=1475951&tool=pmcentrez?&rendertype=abstract. Accessed 3 April 2013.
[48]  Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, et al. (2008) Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 26: 5233–5239. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2652090&tool=pmcentrez?&rendertype=abstract. Accessed 3 April 2013.
[49]  Rosenberg SA, Dudley ME, Restifo NP (2008) Cancer immunotherapy. The New England journal of medicine 359: 1072. Available: http://www.ncbi.nlm.nih.gov/pubmed/18768?956. Accessed 3 April 2013.
[50]  Harlin H, Meng Y, Peterson AC, Zha Y, Tretiakova M, et al. (2009) Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer research 69: 3077–3085. Available: http://www.ncbi.nlm.nih.gov/pubmed/19293?190. Accessed 3 April 2013.
[51]  Brown CE, Vishwanath RP, Aguilar B, Starr R, Najbauer J, et al. (2007) Tumor-derived chemokine MCP-1/CCL2 is sufficient for mediating tumor tropism of adoptively transferred T cells. Journal of immunology (Baltimore, Md: 1950) 179: 3332–3341. Available: http://www.ncbi.nlm.nih.gov/pubmed/17709?550. Accessed 3 April 2013.
[52]  Fisher DT, Chen Q, Skitzki JJ, Muhitch JB, Zhou L, et al. (2011) IL-6 trans-signaling licenses mouse and human tumor microvascular gateways for trafficking of cytotoxic T cells. The Journal of clinical investigation 121: 3846–3859. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=3195455&tool=pmcentrez?&rendertype=abstract. Accessed 3 April 2013.
[53]  Kodumudi KN, Weber A, Sarnaik AA, Pilon-Thomas S (2012) Blockade of myeloid-derived suppressor cells after induction of lymphopenia improves adoptive T cell therapy in a murine model of melanoma. Journal of immunology (Baltimore, Md: 1950) 189: 5147–5154. Available: http://www.ncbi.nlm.nih.gov/pubmed/23100?512. Accessed 11 June 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133