全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Toward Repurposing Ciclopirox as an Antibiotic against Drug-Resistant Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae

DOI: 10.1371/journal.pone.0069646

Full-Text   Cite this paper   Add to My Lib

Abstract:

Antibiotic-resistant infections caused by gram-negative bacteria are a major healthcare concern. Repurposing drugs circumvents the time and money limitations associated with developing new antimicrobial agents needed to combat these antibiotic-resistant infections. Here we identified the off-patent antifungal agent, ciclopirox, as a candidate to repurpose for antibiotic use. To test the efficacy of ciclopirox against antibiotic-resistant pathogens, we used a curated collection of Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae clinical isolates that are representative of known antibiotic resistance phenotypes. We found that ciclopirox, at 5–15 μg/ml concentrations, inhibited bacterial growth regardless of the antibiotic resistance status. At these same concentrations, ciclopirox reduced growth of Pseudomonas aeruginosa clinical isolates, but some of these pathogens required higher ciclopirox concentrations to completely block growth. To determine how ciclopirox inhibits bacterial growth, we performed an overexpression screen in E. coli. This screen revealed that galE, which encodes UDP-glucose 4-epimerase, rescued bacterial growth at otherwise restrictive ciclopirox concentrations. We found that ciclopirox does not inhibit epimerization of UDP-galactose by purified E. coli GalE; however, ΔgalU, ΔgalE, ΔrfaI, or ΔrfaB mutant strains all have lower ciclopirox minimum inhibitory concentrations than the parent strain. The galU, galE, rfaI, and rfaB genes all encode enzymes that use UDP-galactose or UDP-glucose for galactose metabolism and lipopolysaccharide (LPS) biosynthesis. Indeed, we found that ciclopirox altered LPS composition of an E. coli clinical isolate. Taken together, our data demonstrate that ciclopirox affects galactose metabolism and LPS biosynthesis, two pathways important for bacterial growth and virulence. The lack of any reported fungal resistance to ciclopirox in over twenty years of use in the clinic, its excellent safety profiles, novel target(s), and efficacy, make ciclopirox a promising potential antimicrobial agent to use against multidrug-resistant problematic gram-negative pathogens.

References

[1]  Collignon P, Powers JH, Chiller TM, Aidara-Kane A, Aarestrup FM (2009) World Health Organization ranking of antimicrobials according to their importance in human medicine: A critical step for developing risk management strategies for the use of antimicrobials in food production animals. Clin Infect Dis 49: 132–141.
[2]  Mauldin PD, Salgado CD, Hansen IS, Durup DT, Bosso JA (2010) Attributable hospital cost and length of stay associated with health care-associated infections caused by antibiotic-resistant gram-negative bacteria. Antimicrob Agents Chemother 54: 109–115.
[3]  Peleg AY, Hooper DC (2010) Hospital-acquired infections due to gram-negative bacteria. N Engl J Med 362: 1804–1813.
[4]  Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, et al. (2008) NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect Control Hosp Epidemiol 29: 996–1011.
[5]  Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, et al. (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48: 1–12.
[6]  Snitkin ES, Zelazny AM, Thomas PJ, Stock F, Henderson DK, et al. (2012) Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med 4: 148ra116.
[7]  Fischbach MA (2009) Antibiotics for Emerging Pathogens. Science 325: 1089–1093.
[8]  Chopra S, Torres-Ortiz M, Hokama L, Madrid P, Tanga M, et al. (2010) Repurposing FDA-approved drugs to combat drug-resistant Acinetobacter baumannii. J Antimicrob Chemother 65: 2598–2601.
[9]  Deng L, Sundriyal S, Rubio V, Shi Z, Song Y (2009) Coordination chemistry based approach to lipophilic inhibitors of 1-deoxy-D-xylulose-5-phosphate reductoisomerase. J Med Chem 52: 6539–6542.
[10]  Subissi A, Monti D, Togni G, Mailland F (2010) Ciclopirox: recent nonclinical and clinical data relevant to its use as a topical antimycotic agent. Drugs 70: 2133–2152.
[11]  Hoque M, Hanauske-Abel HM, Palumbo P, Saxena D, D’Alliessi Gandolfi D, et al. (2009) Inhibition of HIV-1 gene expression by Ciclopirox and Deferiprone, drugs that prevent hypusination of eukaryotic initiation factor 5A. Retrovirology 6: 90.
[12]  Lee SJ, Jin Y, Yoon HY, Choi B-O, Kim HC, et al. (2005) Ciclopirox protects mitochondria from hydrogen peroxide toxicity. Br J Pharmacol 145: 469–476.
[13]  Ko SH, Nauta A, Morrison SD, Zhou H, Zimmermann A, et al. (2011) Antimycotic ciclopirox olamine in the diabetic environment promotes angiogenesis and enhances wound healing. PloS One 6: e27844.
[14]  Weir SJ, Patton L, Castle K, Rajewski L, Kasper J, et al. (2011) The repositioning of the anti-fungal agent ciclopirox olamine as a novel therapeutic agent for the treatment of haematologic malignancy. J Clin Pharm Ther 36: 128–134.
[15]  Eberhard Y, Mcdermott SP, Wang X, Gronda M, Venugopal A, et al. (2009) Chelation of intracellular iron with the antifungal agent ciclopirox olamine induces cell death in leukemia and myeloma cells. Blood 114: 3064–3073.
[16]  Leem S-H, Park J-E, Kim I-S, Chae J-Y, Sugino A, et al. (2003) The possible mechanism of action of ciclopirox olamine in the yeast Saccharomyces cerevisiae. Mol Cells 15: 55–61.
[17]  Niewerth M, Kunze D, Seibold M, Schaller M, Korting HC, et al. (2003) Ciclopirox Olamine Treatment Affects the Expression Pattern of Candida albicans Genes Encoding Virulence Factors, Iron Metabolism Proteins, and Drug Resistance Factors. Antimicrob Agents Chemother 47: 1805–1817.
[18]  Sigle H-C, Thewes S, Niewerth M, Korting HC, Sch?fer-Korting M, et al. (2005) Oxygen accessibility and iron levels are critical factors for the antifungal action of ciclopirox against Candida albicans. J Antimicrob Chemother 55: 663–673.
[19]  Dittmar W, Lohaus G (1973) HOE 296, a new antimycotic compound with a broad antimicrobial spectrum. Laboratory results. Arzneimittelforschung 23: 670–674.
[20]  Jue SG, Dawson GW, Brogden RN (1985) Ciclopirox olamine 1% cream. A preliminary review of its antimicrobial activity and therapeutic use. Drugs 29: 330–341.
[21]  Becnel Boyd L, Maynard MJ, Morgan-Linnell SK, Horton LB, Sucgang R, et al. (2009) Relationships among ciprofloxacin, gatifloxacin, levofloxacin, and norfloxacin MICs for fluoroquinolone-resistant Escherichia coli clinical isolates. Antimicrob Agents Chemother 53: 229–234.
[22]  Morgan-Linnell SK, Becnel Boyd L, Steffen D, Zechiedrich L (2009) Mechanisms accounting for fluoroquinolone resistance in Escherichia coli clinical isolates. Antimicrob Agents Chemother 53: 235–241.
[23]  Swick MC, Morgan-Linnell SK, Carlson KM, Zechiedrich L (2011) Expression of multidrug efflux pump genes acrAB-tolC, mdfA, and norE in Escherichia coli clinical isolates as a function of fluoroquinolone and multidrug resistance. Antimicrob Agents Chemother 55: 921–924.
[24]  Garsin DA (2012) Ethanolamine : A Signal to Commence a Host-Associated Lifestyle? MBio 3: 1–4 doi:10.1128/mBio.00172-12.
[25]  Tarawneh RT, Hamdan II, Bani-Jaber A, Darwish RM (2005) Physicochemical studies on Ciclopirox olamine complexes with divalent metal ions. Int J Pharm 289: 179–187.
[26]  Weinberg ED (2009) Iron availability and infection. Biochim Biophys Acta 1790: 600–605.
[27]  Bullen Rogers, H.J Griffiths, E JJ (1978) Role of iron in bacterial infection. Arber W, Henle W, Hofschneider PH, Humphrey JH, Klein J, et al., editors Springer Berlin Heidelberg. 1–35.
[28]  Dwyer DJ, Kohanski M a, Collins JJ (2009) Role of reactive oxygen species in antibiotic action and resistance. Curr Opin Microbiol 12: 482–489.
[29]  Loui C, Chang AC, Lu S (2009) Role of the ArcAB two-component system in the resistance of Escherichia coli to reactive oxygen stress. BMC Microbiol 9: 183.
[30]  Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, et al. (2005) Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA research : an international journal for rapid publication of reports on genes and genomes. DNA Res 12: 291–299.
[31]  Niou Y-K, Wu W-L, Lin L-C, Yu M-S, Shu H-Y, et al. (2009) Role of galE on biofilm formation by Thermus spp. Biochem Biophys Res Commun 390: 313–318.
[32]  Urbaniak MD, Tabudravu JN, Msaki A, Matera KM, Brenk R, et al. (2006) Identification of novel inhibitors of UDP-Glc 4′-epimerase, a validated drug target for african sleeping sickness. Bioorg Med Chem Lett 16: 5744–5747.
[33]  Chen X, Kowal P, Hamad S, Fan H, Wang PG (1999) Cloning, expression and characterization of a UDP-galactose 4-epimerase from Escherichia coli. Biotechnol Lett 21: 1131–1135.
[34]  Sousa Feliciano, Joana R., and Jorge H. Leit?o SA (2011) Biotechnology of Biopolymers. Activated Sugar Precursors: Biosynthetic Pathways and Biological Roles of an Important Class of Intermediate Metabolites in Bacteria. In: Magdy Elnashar, editor. Biotechnology of Biopolymers. InTech. 257–274.
[35]  Lee SJ, Trostel A, Le P, Harinarayanan R, Fitzgerald PC, et al. (2009) Cellular stress created by intermediary metabolite imbalances. Proc Natl Acad Sci U S A 106: 19515–19520.
[36]  Csiszovszki Z, Krishna S, Orosz L (2011) Structure and Function of the -Galactose Network in Enterobacteria. MBio 2: 1–8 doi:10.1128/mBio.00053-11.
[37]  Raetz CRH, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71: 635–700.
[38]  Whitfield C, Paiment A (2003) Biosynthesis and assembly of Group 1 capsular polysaccharides in Escherichia coli and related extracellular polysaccharides in other bacteria. Carbohydr Res 338: 2491–2502.
[39]  Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, et al. (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2: 2006.0008 doi:10.1038/msb4100050.
[40]  Liu A, Tran L, Becket E, Lee K, Chinn L, et al. (2010) Antibiotic sensitivity profiles determined with an Escherichia coli gene knockout collection: generating an antibiotic bar code. Antimicrob Agents Chemother 54: 1393–1403.
[41]  Ramstedt M, Nakao R, Wai SN, Uhlin BE, Boily J-F (2011) Monitoring surface chemical changes in the bacterial cell wall: multivariate analysis of cryo-x-ray photoelectron spectroscopy data. J Biol Chem 286: 12389–12396.
[42]  Yethon J a, Heinrichs DE, Monteiro M a, Perry MB, Whitfield C (1998) Involvement of waaY, waaQ, and waaP in the modification of Escherichia coli lipopolysaccharide and their role in the formation of a stable outer membrane. J Biol Chem 273: 26310–26316.
[43]  Lee H, Hsu F, Turk J, Eduardo A, Groisman EA (2004) The PmrA-Regulated pmrC Gene Mediates Phosphoethanolamine Modification of Lipid A and Polymyxin Resistance in Salmonella enterica.. J Bacteriol 186: 4124–4133.
[44]  Breazeale SD, Ribeiro A a, Raetz CRH (2003) Origin of lipid A species modified with 4-amino-4-deoxy-L-arabinose in polymyxin-resistant mutants of Escherichia coli. An aminotransferase (ArnB) that generates UDP-4-deoxyl-L-arabinose. J Biol Chem 278: 24731–24739.
[45]  Fry BN, Feng S, Chen YY, Newell DG, Coloe PJ, et al. (2000) The galE gene of Campylobacter jejuni is involved in lipopolysaccharide synthesis and virulence. Infect Immun 68: 2594–2601.
[46]  Ho TD, Waldor MK (2007) Enterohemorrhagic Escherichia coli O157:H7 gal mutants are sensitive to bacteriophage P1 and defective in intestinal colonization. Infect Immun 75: 1661–1666.
[47]  Nesper J, Lauriano CM, Klose KE, Kapfhammer D, Krai? A, et al. (2001) Characterization of Vibrio cholerae O1 El Tor galU and galE Mutants : Influence on Lipopolysaccharide Structure, Colonization, and Biofilm Formation. Infect Immun 69: 435–445.
[48]  Ramos ANA, Boels IC, Willem M, Santos H (2001) Relationship between Glycolysis and Exopolysaccharide Biosynthesis in Lactococcus lactis. Appl Environ Microbiol 67: 33–41.
[49]  Singh V, Satheesh S V, Raghavendra ML, Sadhale PP (2007) The key enzyme in galactose metabolism, UDP-galactose-4-epimerase, affects cell-wall integrity and morphology in Candida albicans even in the absence of galactose. Fungal Genet Biol 44: 563–574.
[50]  Sakurai K, Sakaguchi T, Yamaguchi H, Iwata K (1978) Mode of action of 6-cyclohexyl-1-hydroxy-4-methyl-2(1H)-py?ridoneethanolamine salt (Hoe 296). Chemotherapy 24: 68–76.
[51]  Marolda CL, Lahiry P, Vines E, Saldias S, Valvano MA (2006) Micromethods for the characterization of lipid A-core and O-antigen lipopolysaccharide. Methods Mol Biol 347: 237–252.
[52]  Rivera M, Bertasso A, McCaffrey C, Georgopapadakou NH (1993) Porins and lipopolysaccharide of Escherichia coli ATCC 25922 and isogenic rough mutants. FEMS Microbiol Lett 108: 183–187.
[53]  Consortium J, Microbiome H, Data P, Working G (2012) Evaluation of 16S rDNA-based community profiling for human microbiome research. PloS One 7: e39315.
[54]  Cornelis P, Matthijs S (2002) Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ Microbiol 4: 787–798.
[55]  Fuse K, Fujimura S, Kikuchi T, Gomi K, Iida Y, et al. (2013) Reduction of virulence factor pyocyanin production in multidrug-resistant Pseudomonas aeruginosa. J Infect Chemother 19: 82–88.
[56]  Nordmann P, Naas T, Poirel L (2011) Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 17: 1791–1798.
[57]  Ji SC, Wang X, Yun SH, Jeon HJ, Lee HJ, et al. (2011) In vivo transcription dynamics of the galactose operon: a study on the promoter transition from P1 to P2 at onset of stationary phase. PloS One 6: e17646.
[58]  G?rke B, Vogel J (2008) Noncoding RNA control of the making and breaking of sugars. Genes Dev 22: 2914–2925.
[59]  Germanier R, Fuer E (1975) Isolation and characterization of Gal E mutant Ty 21a of Salmonella typhi: a candidate strain for a live, oral typhoid vaccine. J Infect Dis 131: 553–558.
[60]  Nakao R, Senpuku H, Watanabe H (2006) Porphyromonas gingivalis galE is involved in lipopolysaccharide O-antigen synthesis and biofilm formation. Infect Immun 74: 6145–6153.
[61]  G?rke B, Stülke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6: 613–624.
[62]  Fuhrer T, Fischer E, Sauer U (2005) Experimental Identification and Quantification of Glucose Metabolism in Seven Bacterial Species. J Bacteriol 187: 1581–1590.
[63]  Kim HU, Kim TY, Lee SY (2010) Genome-scale metabolic network analysis and drug targeting of multi-drug resistant pathogen Acinetobacter baumannii AYE. Mol Biosyst 6: 339–348.
[64]  Kamada N, Kim Y-G, Sham HP, Vallance B a, Puente JL, et al. (2012) Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science (New York, NY) 336: 1325–1329.
[65]  Ross KL, Davis CN, Fridovich-Keil JL (2004) Differential roles of the Leloir pathway enzymes and metabolites in defining galactose sensitivity in yeast. Mol Genet Metab 83: 103–116.
[66]  Brown V, Sabina J, Johnston M (2009) Specialized sugar sensing in diverse fungi. Curr Biol 19: 436–441.
[67]  Wasilenko J, Fridovich-Keil JL (2006) Relationship between UDP-galactose 4′-epimerase activity and galactose sensitivity in yeast. J Biol Chem 281: 8443–8449.
[68]  Platt a, Reece RJ (1998) The yeast galactose genetic switch is mediated by the formation of a Gal4p-Gal80p-Gal3p complex. EMBO J 17: 4086–4091.
[69]  Bhat PJ, Murthy T V (2001) Transcriptional control of the GAL/MEL regulon of yeast Saccharomyces cerevisiae: mechanism of galactose-mediated signal transduction. Mol Microbiol 40: 1059–1066.
[70]  Askew C, Sellam A, Epp E, Hogues H, Mullick A, et al. (2009) Transcriptional regulation of carbohydrate metabolism in the human pathogen Candida albicans. PLoS Pathog 5: e1000612.
[71]  Han T-L, Cannon RD, Villas-B?as SG (2011) The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genet Biol 48: 747–763.
[72]  Braga PC, Piatti G, Conti E, Vignali F (1992) Effects of subinhibitory concentrations of ciclopirox on the adherence of Candida albicans to human buccal and vaginal epithelial cells. Arzneimittelforschung 42: 1368–1371.
[73]  Zhou H, Shen T, Luo Y, Liu L, Chen W, et al. (2010) The antitumor activity of the fungicide ciclopirox. Int J Cancer 127: 2467–2477.
[74]  Brockhausen I (1999) Pathways of O-glycan biosynthesis in cancer cells. Biochim Biophys Acta 1473: 67–95.
[75]  Baker MA, Taub RN, Whelton CH, Hindenburg A (1984) Aberrant sialylation of granulocyte membranes in chronic myelogenous leukemia. Blood 63: 1194–1197.
[76]  Brockhausen I, Yang JM, Burchell J, Whitehouse C, Taylor-Papadimitriou J (1995) Mechanisms underlying aberrant glycosylation of MUC1 mucin in breast cancer cells. Eur J Biochem 233: 607–617.
[77]  Wang X, Quinn PJ (2010) Lipopolysaccharide: Biosynthetic pathway and structure modification. Prog Lipid Res 49: 97–107.
[78]  Gunn JS, Lim KB, Krueger J, Kim K, Guo L, et al. (1998) PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance. Mol Microbiol 27: 1171–1182.
[79]  Zhou Z, Ribeiro a a, Lin S, Cotter RJ, Miller SI, et al. (2001) Lipid A modifications in polymyxin-resistant Salmonella typhimurium: PMRA-dependent 4-amino-4-deoxy-L-arabinose, and phosphoethanolamine incorporation. J Biol Chem 276: 43111–43121.
[80]  Gunn JS, Ryan SS, Velkinburgh JC Van, Ernst RK, Miller SI, et al. (2000) Genetic and Functional Analysis of a PmrA-PmrB-Regulated Locus Necessary for Lipopolysaccharide Modification, Antimicrobial Peptide Resistance, and Oral Virulence of Salmonella enterica Serovar Typhimurium Genetic. Infect Immun 68: 6139–6146.
[81]  Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189: 113–130.
[82]  Eisenstadt Carlton, B.C. and Brown, B.J E (1994) Gene mutation. In Gerhardt Murray, R. G. E., Wood, W. A., and Krieg, N. R. P, editors. Methods for General and Molecular Bacteriology. Washington, DC: American Society for Microbiology. 297–316.
[83]  CLSI (2006) Performance standards for antimicrobial susceptibility testing: M100-S16; 16th informational supplement. Wayne, PA: Clinical and Laboratory Standards Institute.
[84]  Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.
[85]  Cummings L, Riley L, Black L, Souvorov A, Resenchuk S, et al. (2002) Genomic BLAST: custom-defined virtual databases for complete and unfinished genomes. FEMS Microbiol Lett 216: 133–138.
[86]  Cole JR, Wang Q, Cardenas E, Fish J, Chai B, et al. (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37: D141–5.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133