[1] | Mohler ER III (2004) Mechanisms of aortic valve calcification. Am J Cardiol 94: 1396-1402. doi:10.1016/j.amjcard.2004.08.013. PubMed: 15566910.
|
[2] | Rabkin-Aikawa E [!(surname)!] , Aikawa M, Schoen FJ (2004) Dynamic and Reversible Changes of Interstitial Cell Phenotype During Remodeling of Cardiac Valves. J Heart Valve Dis 13: 841-847. PubMed: 15473488.
|
[3] | Aikawa E, Whittaker P, Farber M, Mendelson K, Padera RF et al. (2006) Human semilunar cardiac valve remodeling by activated cells from fetus to adult: Implications for postnatal adaptation, pathology, and tissue engineering. Circulation 113: 1344-1352. doi:10.1161/CIRCULATIONAHA.105.591768. PubMed: 16534030.
|
[4] | Hinton RB, Lincoln J, Deutsch GH, Osinska H, Manning PB et al. (2006) Extracellular Matrix Remodeling and Organization in Developing and Diseased Aortic Valves. Circ Res 98: 1431-1438. doi:10.1161/01.RES.0000224114.65109.4e. PubMed: 16645142.
|
[5] | Latif N, Sarathchandra P, Thomas PS, Antoniw J, Batten P et al. (2007) Characterization of Structural and Signaling Molecules by Human Valve Interstitial Cells and Comparison to Human Mesenchymal Stem Cells. J Heart Valve Dis 16: 56-66. PubMed: 17315384.
|
[6] | Gould ST, Darling NJ, Anseth KS (2012) Small peptide functionalized thiol-ene hydrogels as culture substrates for understanding valvular interstitial cell activation and de novo tissue deposition. Acta Biomater 8: 3201-3209. doi:10.1016/j.actbio.2012.05.009. PubMed: 22609448.
|
[7] | Hinton RB, Yutzey KE (2011) Heart valve structure and function in development and disease. Annu Rev Physiol 73: 29-46. doi:10.1146/annurev-physiol-012110-142145. PubMed: 20809794.
|
[8] | Rabkin E, Aikawa M, Stone JR, Fukumoto Y, Libby P et al. (2001) Activated Interstitial Myofibroblasts Express Catabolic Enzymes and Mediate Matrix Remodeling in Myxomatous Heart Valves. Circulation 104: 2525-2532. doi:10.1161/hc4601.099489. PubMed: 11714645.
|
[9] | Rajamannan NM, Subramaniam M, Rickard D, Stock SR, Donovan J et al. (2003) Human Aortic Valve Calcification Is Associated With an Osteoblast Phenotype. Circulation 107: 2181-2184. doi:10.1161/01.CIR.0000070591.21548.69. PubMed: 12719282.
|
[10] | Liu AC, Joag VR, Gotlieb AI (2007) The Emerging Role of Valve Interstitial Cell Phenotypes in Regulating Heart Valve Pathobiology. Am J Pathol 171: 1407-1418. doi:10.2353/ajpath.2007.070251. PubMed: 17823281.
|
[11] | Rattazzi M, Iop L, Faggin E, Bertacco E, Zoppellaro G et al. (2008) Clones of Interstitial Cells From Bovine Aortic Valve Exhibit Different Calcifying Potential When Exposed to Endotoxin and Phosphate. Arterioscler Thromb Vasc Biol 28: 2165-2172. doi:10.1161/ATVBAHA.108.174342. PubMed: 18832754.
|
[12] | Chen JH, Yip CY, Sone ED, Simmons CA (2009) Identification and Characterization of Aortic Valve Mesenchymal Progenitor Cells with Robust Osteogenic Calcification Potential. Am J Pathol 174: 1109-1119. doi:10.2353/ajpath.2009.080750. PubMed: 19218344.
|
[13] | Pho M, Lee W, Watt DR, Laschinger C, Simmons CA et al. (2008) Cofilin is a marker of myofibroblast differentiation in cells from porcine aortic cardiac valves. Am J Physiol Heart Circ Physiol 294: H1767-H1778. doi:10.1152/ajpheart.01305.2007. PubMed: 18263709.
|
[14] | Veinot JP, Prichett-Pejic W, Song J, Waghray G, Parks W et al. (2006) CD117-positive cells and mast cells in adult human cardiac valves--observations and implications for the creation of bioengineered grafts. Cardiovasc Pathol 15: 36-40. doi:10.1016/j.carpath.2005.08.005. PubMed: 16414455.
|
[15] | Hajdu Z, Romeo SJ, Fleming PA, Markwald RR, Visconti RP, Drake CJ (2011) Recruitment of bone marrow-derived valve interstitial cells is a normal homeostatic process. J Mol Cell Cardiol 51: 955-965. doi:10.1016/j.yjmcc.2011.08.006. PubMed: 21871458.
|
[16] | Deb A, Wang SH, Skelding K, Miller D, Simper D et al. (2005) Bone marrow-derived myofibroblasts are present in adult human heart valves. J Heart Valve Dis 14: 674-678. PubMed: 16245507.
|
[17] | Pusztaszeri MP, Seelentag W, Bosman FT (2006) Immunohistochemical Expression of Endothelial Markers CD31, CD34, von Willebrand Factor, and Fli-1 in Normal Human Tissues. J Histochem Cytochem 54: 385-395. doi:10.1369/jhc.4A6514.2005. PubMed: 16234507.
|
[18] | Hinz B, Pittet P, Smith-Clerc J, Chaponnier C, Meister JJ (2004) Myofibroblast Development Is Characterized by Specific Cell-Cell Adherens Junctions. Mol Biol Cell 15: 4310-4320. doi:10.1091/mbc.E04-05-0386. PubMed: 15240821.
|
[19] | Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J et al. (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7: 1028-1034. doi:10.1038/nm0901-1028. PubMed: 11533706.
|
[20] | Stallcup WB (2002) The NG2 proteoglycan: Past insights and future prospects. J Neurocytol 31: 423-435. doi:10.1023/A:1025731428581. PubMed: 14501214.
|
[21] | Initiative TISC (2007) Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotech 25: 803-816.
|
[22] | Gang EJ, Bosnakovski D, Figueiredo CA, Visser JW, Perlingeiro RC (2007) SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood 109: 1743-1751. doi:10.1182/blood-2005-11-010504. PubMed: 17062733.
|
[23] | Johnson CM, Hanson MN, Helgeson SC (1987) Porcine cardiac valvular subendothelial cells in culture: Cell isolation and growth characteristics. J Mol Cell Cardiol 19: 1185-1193. doi:10.1016/S0022-2828(87)80529-1. PubMed: 3327949.
|
[24] | Lee DM, Kiener HP, Agarwal SK, Noss EH, Watts GF et al. (2007) Cadherin-11 in Synovial Lining Formation and Pathology in Arthritis. Science 315: 1006-1010. doi:10.1126/science.1137306. PubMed: 17255475.
|
[25] | Benoit DS, Nuttelman CR, Collins SD, Anseth KS (2006) Synthesis and characterization of a fluvastatin-releasing hydrogel delivery system to modulate hMSC differentiation and function for bone regeneration. Biomaterials 27: 6102-6110. doi:10.1016/j.biomaterials.2006.06.031. PubMed: 16860387.
|
[26] | Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R et al. (1999) Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science 284: 143-147. doi:10.1126/science.284.5411.143. PubMed: 10102814.
|
[27] | Paranya G, Vineberg S, Dvorin E, Kaushal S, Roth SJ et al. (2001) Aortic Valve Endothelial Cells Undergo Transforming Growth Factor-beta-Mediated and Non-Transforming Growth Factor-beta-Mediated Transdifferentiation in Vitro. Am J Pathol 159: 1335-1343. doi:10.1016/S0002-9440(10)62520-5. PubMed: 11583961.
|
[28] | Müller AM, Hermanns MI, Skrzynski C, Nesslinger M, Müller KM et al. (2002) Expression of the Endothelial Markers PECAM-1, vWf, and CD34 in Vivo and in Vitro. Exp Mol Pathol 72: 221-229. doi:10.1006/exmp.2002.2424. PubMed: 12009786.
|
[29] | Pittet P, Lee K, Kulik AJ, Meister JJ, Hinz B (2008) Fibrogenic fibroblasts increase intercellular adhesion strength by reinforcing individual OB-cadherin bonds. J Cell Sci 121: 877-886. doi:10.1242/jcs.024877. PubMed: 18303045.
|
[30] | Walker GA, Masters KS, Shah DN, Anseth KS, Leinwand LA (2004) Valvular myofibroblast activation by transforming growth factor-beta: Implications for pathological extracellular matrix remodeling in heart valve disease. Circ Res 95: 253-260. doi:10.1161/01.RES.0000136520.07995.aa. PubMed: 15217906.
|
[31] | Chen JH, Chen WL, Sider KL, Yip CY, Simmons CA (2011) β-catenin mediates mechanically regulated, transforming growth factor-β1-induced myofibroblast differentiation of aortic valve interstitial cells. Arterioscler Thromb Vasc Biol 31: 590-597. doi:10.1161/ATVBAHA.110.220061. PubMed: 21127288.
|
[32] | Cushing MC, Mariner PD, Liao JT, Sims EA, Anseth KS (2008) Fibroblast growth factor represses Smad-mediated myofibroblast activation in aortic valvular interstitial cells. FASEB J 22: 1769-1777. doi:10.1096/fj.07-087627. PubMed: 18218921.
|
[33] | Kii I, Amizuka N, Shimomura J, Saga Y, Kudo A (2004) Cell-Cell Interaction Mediated by Cadherin-11 Directly Regulates the Differentiation of Mesenchymal Cells Into the Cells of the Osteo-Lineage and the Chondro-Lineage. Journal of Bone and Mineral Research 19: 1840-1849.
|
[34] | Okazaki M, Takeshita S, Kawai S, Kikuno R, Tsujimura A et al. (1994) Molecular cloning and characterization of OB-cadherin, a new member of cadherin family expressed in osteoblasts. J Biol Chem 269: 12092-12098. PubMed: 8163513.
|
[35] | Di Benedetto A, Watkins M, Grimston S, Salazar V, Donsante C et al. (2010) N-cadherin and cadherin 11 modulate postnatal bone growth and osteoblast differentiation by distinct mechanisms. J Cell Sci 123: 2640-2648. doi:10.1242/jcs.067777. PubMed: 20605916.
|
[36] | Simonneau L, Kitagawa M, Suzuki S, Thiery JP (1995) Cadherin 11 Expression Marks the Mesenchymal Phenotype: Towards New Functions for Cadherins? Cell Adhes Commun 3: 115-130. doi:10.3109/15419069509081281. PubMed: 7583005.
|
[37] | Ding XW, Wu JH, Jiang CP (2010) ABCG2: A potential marker of stem cells and novel target in stem cell and cancer therapy. Life Sci 86: 631-637. doi:10.1016/j.lfs.2010.02.012. PubMed: 20159023.
|
[38] | Sereti KI, Oikonomopoulos A, Unno K, Cao X, Qiu Y et al. (2013) ATP-Binding Cassette G-Subfamily Transporter 2 Regulates Cell Cycle Progression and Asymmetric Division in Mouse Cardiac Side Population Progenitor Cells. Circ Res 112: 27-34. doi:10.1161/CIRCRESAHA.111.300010. PubMed: 23136123.
|
[39] | Ozerdem U, Grako KA, Dahlin-Huppe K, Monosov E, Stallcup WB (2001) NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn 222: 218-227. doi:10.1002/dvdy.1200. PubMed: 11668599.
|
[40] | Doyle MJ, Zhou S, Tanaka KK, Pisconti A, Farina NH et al. (2011) Abcg2 labels multiple cell types in skeletal muscle and participates in muscle regeneration. J Cell Biol 195: 147-163. doi:10.1083/jcb.201103159. PubMed: 21949413.
|
[41] | Wylie-Sears J, Aikawa E, Levine RA, Yang JH, Bischoff J (2011) Mitral Valve Endothelial Cells With Osteogenic Differentiation Potential. Arterioscler Thromb Vasc Biol 31: 598-607. doi:10.1161/ATVBAHA.110.216184. PubMed: 21164078.
|
[42] | Bischoff J, Aikawa E (2011) Progenitor Cells Confer Plasticity to Cardiac Valve Endothelium. J Cardiovasc Transl Res 4: 710-719. doi:10.1007/s12265-011-9312-0. PubMed: 21789724.
|
[43] | Paruchuri S, Yang JH, Aikawa E, Melero-Martin JM, Khan ZA et al. (2006) Human Pulmonary Valve Progenitor Cells Exhibit Endothelial/Mesenchymal Plasticity in Response to Vascular Endothelial Growth Factor-A and Transforming Growth Factor-beta2. Circ Res 99: 861-869. doi:10.1161/01.RES.0000245188.41002.2c. PubMed: 16973908.
|
[44] | O’Brien KD, Reichenbach DD, Marcovina SM, Kuusisto J, Alpers CE et al. (1996) Apolipoproteins B, (a), and E Accumulate in the Morphologically Early Lesion of 'Degenerative' Valvular Aortic Stenosis. Arterioscler Thromb Vasc Biol 16: 523-532. doi:10.1161/01.ATV.16.4.523. PubMed: 8624774.
|
[45] | Chen JH, Simmons CA (2011) Cell-Matrix Interactions in the Pathobiology of Calcific Aortic Valve Disease: Critical Roles for Matricellular, Matricrine, and Matrix Mechanics Cues. Circ Res 108: 1510-1524. doi:10.1161/CIRCRESAHA.110.234237. PubMed: 21659654.
|
[46] | Zapata AG, Alfaro D, García-Ceca J, López-Larrea C, López-Vázquez A et al. (2012) Biology of Stem Cells: The Role of Microenvironments. Stem Cell Transplantation: Advances Experimental Med Biol, 741: 135-151. PubMed: 22457108.
|
[47] | Wagers AJ (2012) The Stem Cell Niche in Regenerative Medicine. Cell Stem Cell 10: 362-369. doi:10.1016/j.stem.2012.02.018. PubMed: 22482502.
|
[48] | Wang H, Haeger SM, Kloxin AM, Leinwand LA, Anseth KS (2012) Redirecting Valvular Myofibroblasts into Dormant Fibroblasts through Light-mediated Reduction in Substrate Modulus. PLOS ONE 7: e39969. doi:10.1371/journal.pone.0039969. PubMed: 22808079.
|
[49] | Gilbert PM, Blau HM (2011) Engineering a stem cell house into a home. Stem Cell Res Ther 2: 3. doi:10.1186/scrt44. PubMed: 21345268.
|
[50] | Kloxin AM, Kasko AM, Salinas CN, Anseth KS (2009) Photodegradable Hydrogels for Dynamic Tuning of Physical and Chemical Properties. Science 324: 59-63. doi:10.1126/science.1169494. PubMed: 19342581.
|
[51] | Martin CM, Meeson AP, Robertson SM, Hawke TJ, Richardson JA et al. (2004) Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol 265: 262-275. doi:10.1016/j.ydbio.2003.09.028. PubMed: 14697368.
|