Background Pleurocybella porrigens is a mushroom-forming fungus, which has been consumed as a traditional food in Japan. In 2004, 55 people were poisoned by eating the mushroom and 17 people among them died of acute encephalopathy. Since then, the Japanese government has been alerting Japanese people to take precautions against eating the P. porrigens mushroom. Unfortunately, despite efforts, the molecular mechanism of the encephalopathy remains elusive. The genome and transcriptome sequence data of P. porrigens and the related species, however, are not stored in the public database. To gain the omics data in P. porrigens, we sequenced genome and transcriptome of its fruiting bodies and mycelia by next generation sequencing. Methodology/Principal Findings Short read sequences of genomic DNAs and mRNAs in P. porrigens were generated by Illumina Genome Analyzer. Genome short reads were de novo assembled into scaffolds using Velvet. Comparisons of genome signatures among Agaricales showed that P. porrigens has a unique genome signature. Transcriptome sequences were assembled into contigs (unigenes). Biological functions of unigenes were predicted by Gene Ontology and KEGG pathway analyses. The majority of unigenes would be novel genes without significant counterparts in the public omics databases. Conclusions Functional analyses of unigenes present the existence of numerous novel genes in the basidiomycetes division. The results mean that the omics information such as genome, transcriptome and metabolome in basidiomycetes is short in the current databases. The large-scale omics information on P. porrigens, provided from this research, will give a new data resource for gene discovery in basidiomycetes.
References
[1]
Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95: 641-655. doi:10.1016/S0953-7562(09)80810-1.
[2]
Kothe E (2001) Mating-type genes for basidiomycete strain improvement in mushroom farming. Appl Microbiol Biotechnol 56: 602-612. doi:10.1007/s002530100763. PubMed: 11601606.
[3]
Kues U, Liu Y (2000) Fruiting body production in basidiomycetes. Appl Microbiol Biotechnol 54: 141-152. doi:10.1007/s002530000396. PubMed: 10968625.
[4]
Ainsworth GC, Bisby GR, Kirk PM, Cannon PF, David JC et al. (2001) Ainsworth & Bisby’s dictionary of the fungi. CAB International.
[5]
Hawksworth DL (2001) Mushrooms: The extent of the unexplored potential. Int J Med Mush 3: 5. doi:10.1615/IntJMedMushr.v3.i4.50.
[6]
Lomascolo A, Stentelaire C, Asther M, Lesage-Meessen L (1999) Basidiomycetes as new biotechnological tools to generate natural aromatic flavours for the food industry. Trends Biotechnol 17: 282-289. doi:10.1016/S0167-7799(99)01313-X. PubMed: 10370235.
[7]
Suzuki T, Amano Y, Fujita M, Kobayashi Y, Dohra H et al. (2009) Purification, characterization, and cDNA cloning of a lectin from the mushroom Pleurocybella porrigens. Biosci Biotechnol Biochem 73: 702-709. doi:10.1271/bbb.80774. PubMed: 19270381.
[8]
Kawaguchi T, Suzuki T, Kobayashi Y, Kodani S, Hirai H et al. (2009) Unusual amino acid derivatives from the mushroom Pleurocybella porrigens. Tetrahedron 66: 504-507.
[9]
Wakimoto T, Asakawa T, Akahoshi S, Suzuki T, Nagai K et al. (2010) Proof of the existence of an unstable amino acid: pleurocybellaziridine in Pleurocybella porrigens. Angew Chem Int Ed 50: 1168-1170.
[10]
Sasaki H, Akiyama H, Yoshida Y, Kondo K, Amakura Y et al. (2006) Sugihiratake mushroom (angel’s wing mushroom)-induced cryptogenic encephalopathy may involve vitamin D analogues. Biol Pharm Bull 29: 2514-2518. doi:10.1248/bpb.29.2514. PubMed: 17142993.
[11]
Hasegawa T, Ishibashi M, Takata T, Takano F, Ohta T (2007) Cytotoxic fatty acid from Pleurocybella porrigens. Chem Pharm Bull (Tokyo) 55: 1748-1749.
[12]
Takata T, Hasegawa T, Tatsuno T, Date J, Ishigaki Y et al. (2009) Isolation of N -acetylneuraminic acid and N -glycolylneuraminic acid from Pleurocybella porrigens. J Health Sci 55: 373-379.
[13]
Matsuura M, Saikawa Y, Inui K, Nakae K, Igarashi M et al. (2009) Identification of the toxic trigger in mushroom poisoning. Nat Chem Biol 5: 465-467. doi:10.1038/nchembio.179. PubMed: 19465932.
[14]
Horibe M, Kobayashi Y, Dohra H, Morita T, Murata T et al. Toxic isolectins from the mushroom Boletus venenatus. Phytochemistry 71: 648-657. doi:10.1016/j.phytochem.2009.12.003. PubMed: 20096904.
[15]
Fungal Genome Initiative (2002) White Paper developed by the fungal research community. Available: . http://www-genomewimitedu/seq/fgi /.
[16]
Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18: 821-829. doi:10.1101/gr.074492.107. PubMed: 18349386.
[17]
Schulz MH, Zerbino DR, Vingron M, Birney E (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28: 1086-1092. doi:10.1093/bioinformatics/bts094. PubMed: 22368243.
[18]
Dick GJ, Andersson AF, Baker BJ, Simmons SL, Thomas BC et al. (2009) Community-wide analysis of microbial genome sequence signatures. Genome Biol 10: R85. doi:10.1186/gb-2009-10-8-r85. PubMed: 19698104.
[19]
Pride DT, Meinersmann RJ, Wassenaar TM, Blaser MJ (2003) Evolutionary implications of microbial genome tetranucleotide frequency biases. Genome Res 13: 145-158. doi:10.1101/gr.335003. PubMed: 12566393.
[20]
Nishida H, Abe R, Nagayama T, Yano K (2012) Genome signature difference between Deinococcus radiodurans and Thermus thermophilus. Int J Evol Biol: 2012: 205274.
[21]
Green KA, Streuli CH (2004) Apoptosis regulation in the mammary gland. Cell Mol Life Sci 61: 1867-1883. PubMed: 15289930.
[22]
Habashi JP, Judge DP, Holm TM, Cohn RD, Loeys BL et al. (2006) Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312: 117-121. doi:10.1126/science.1124287. PubMed: 16601194.
[23]
Zacchigna L, Vecchione C, Notte A, Cordenonsi M, Dupont S et al. (2006) Emilin1 links TGF-β maturation to blood pressure homeostasis. Cell 124: 929-942. doi:10.1016/j.cell.2005.12.035. PubMed: 16530041.
[24]
Bianchi ME, Beltrame M (2000) Upwardly mobile proteins. Workshop: The Role of HMG Proteins in Chromatin Structure, Gene Expression and Neoplasia. EMBO Rep 1. pp. 109-114.
[25]
Corcoran D, Fair T, Park S, Rizos D, Patel OV et al. (2006) Suppressed expression of genes involved in transcription and translation in in vitro compared with in vivo cultured bovine embryos. Reproduction 131: 651-660. doi:10.1530/rep.1.01015. PubMed: 16595716.
[26]
Knoll A, Puchta H (2011) The role of DNA helicases and their interaction partners in genome stability and meiotic recombination in plants. J Exp Bot 62: 1565-1579. doi:10.1093/jxb/erq357. PubMed: 21081662.
[27]
Cunillera N, Arro M, Delourme D, Karst F, Boronat A et al. (1996) Arabidopsis thaliana contains two differentially expressed farnesyl-diphosphate synthase genes. J Biol Chem 271: 7774-7780. doi:10.1074/jbc.271.13.7774. PubMed: 8631820.
[28]
Liu D, Gong J, Dai W, Kang X, Huang Z et al. (2012) The genome of Ganderma lucidum provide insights into triterpense biosynthesis and wood degradation. PLOS ONE 7: e36146. doi:10.1371/journal.pone.0036146. PubMed: 22567134.
[29]
Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K et al. (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22: 695-700. doi:10.1038/nbt967. PubMed: 15122302.
[30]
Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM et al. (2010) Perigord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464: 1033-1038. doi:10.1038/nature08867. PubMed: 20348908.
[31]
Curtin CD, Borneman AR, Chambers PJ, Pretorius IS (2012) De-novo assembly and analysis of the heterozygous triploid genome of the wine spoilage yeast Dekkera bruxellensis AWRI1499. PLOS ONE 7: e33840. doi:10.1371/journal.pone.0033840. PubMed: 22470482.
[32]
Garg R, Sahoo A, Tyagi AK, Jain M (2010) Validation of internal control genes for quantitative gene expression studies in chickpea (Cicer arietinum L.). Biochem Biophys Res Commun 396: 283-288. doi:10.1016/j.bbrc.2010.04.079. PubMed: 20399753.
[33]
Greenacre MJ (2007) Correspondence analysis in practice, second edition. Chapman and Hall/CRC.
[34]
Yano K, Imai K, Shimizu A, Hanashita T (2006) A new method for gene discovery in large-scale microarray data. Nucleic Acids Res 34: 1532-1539. doi:10.1093/nar/gkl058. PubMed: 16537840.
[35]
Hamada K, Hongo K, Suwabe K, Shimizu A, Nagayama T et al. (2011) OryzaExpress: an integrated database of gene expression networks and omics annotations in rice. Plant Cell Physiol 52: 220-229. doi:10.1093/pcp/pcq195. PubMed: 21186175.
[36]
Yano K, Satou K, Takeda K (2005) System, method and program for analyzing expression profile, and recording medium recorded with the program. JPN Kokai Tokkyo Koho JP: 2005-073569.
[37]
Yano K, Shimizu A (2010) System for analyzing expression profile and program thereof. World Patent: WO/2010/106794.
[38]
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403-410. doi:10.1016/S0022-2836(05)80360-2. PubMed: 2231712.
[39]
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H et al. (2000) Gene ontology: tool for the unification of biology. Gene Ontology Consortium Nat Genet 25: 25-29.
[40]
Zdobnov EM, Apweiler R (2001) InterProScan--an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17: 847-848. doi:10.1093/bioinformatics/17.9.847. PubMed: 11590104.
[41]
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35: W182-W185. doi:10.1093/nar/gkm321. PubMed: 17526522.
[42]
Mao X, Cai T, Olyarchuk JG, Wei L (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21: 3787-3793. doi:10.1093/bioinformatics/bti430. PubMed: 15817693.
[43]
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5: 621-628. doi:10.1038/nmeth.1226. PubMed: 18516045.
[44]
Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754-1760. doi:10.1093/bioinformatics/btp324. PubMed: 19451168.