全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Effects of Mild Cold Shock (25°C) Followed by Warming Up at 37°C on the Cellular Stress Response

DOI: 10.1371/journal.pone.0069687

Full-Text   Cite this paper   Add to My Lib

Abstract:

Temperature variations in cells, tissues and organs may occur in a number of circumstances. We report here that reducing temperature of cells in culture to 25°C for 5 days followed by a rewarming to 37°C affects cell biology and induces a cellular stress response. Cell proliferation was almost arrested during mild hypothermia and not restored upon returning to 37°C. The expression of cold shock genes, CIRBP and RBM3, was increased at 25°C and returned to basal level upon rewarming while that of heat shock protein HSP70 was inversely regulated. An activation of pro-apoptotic pathways was evidenced by FACS analysis and increased Bax/Bcl2 and BclXS/L ratios. Concomitant increased expression of the autophagosome-associated protein LC3II and AKT phosphorylation suggested a simultaneous activation of autophagy and pro-survival pathways. However, a large proportion of cells were dying 24 hours after rewarming. The occurrence of DNA damage was evidenced by the increased phosphorylation of p53 and H2AX, a hallmark of DNA breaks. The latter process, as well as apoptosis, was strongly reduced by the radical oxygen species (ROS) scavenger, N-acetylcysteine, indicating a causal relationship between ROS, DNA damage and cell death during mild cold shock and rewarming. These data bring new insights into the potential deleterious effects of mild hypothermia and rewarming used in various research and therapeutical fields.

References

[1]  Al-Fageeh MB, Marchant RJ, Carden MJ, Smales CM (2006) The cold-shock response in cultured mammalian cells: harnessing the response for the improvement of recombinant protein production. Biotechnol Bioeng 93: 829-835. doi:10.1002/bit.20789. PubMed: 16329142.
[2]  Al-Fageeh MB, Smales CM (2006) Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems. Biochem J 397: 247-259. doi:10.1042/BJ20060166. PubMed: 16792527.
[3]  Roobol A, Carden MJ, Newsam RJ, Smales CM (2009) Biochemical insights into the mechanisms central to the response of mammalian cells to cold stress and subsequent rewarming. FEBS J 276: 286-302. doi:10.1111/j.1742-4658.2008.06781.x. PubMed: 19054067.
[4]  Fujita J (1999) Cold shock response in mammalian cells. J Mol Microbiol Biotechnol 1: 243-255. PubMed: 10943555.
[5]  Liu AY, Bian H, Huang LE, Lee YK (1994) Transient cold shock induces the heat shock response upon recovery at 37 degrees C in human cells. J Biol Chem 269: 14768-14775. PubMed: 8182082.
[6]  Ermolenko DN, Makhatadze GI (2002) Bacterial cold-shock proteins. Cell Mol Life Sci 59: 1902-1913. doi:10.1007/PL00012513. PubMed: 12530521.
[7]  Dresios J, Aschrafi A, Owens GC, Vanderklish PW, Edelman GM et al. (2005) Cold stress-induced protein Rbm3 binds 60S ribosomal subunits, alters microRNA levels, and enhances global protein synthesis. Proc Natl Acad Sci U S A 102: 1865-1870. doi:10.1073/pnas.0409764102. PubMed: 15684048.
[8]  Ars E, Serra E, de la Luna S, Estivill X, Lázaro C (2000) Cold shock induces the insertion of a cryptic exon in the neurofibromatosis type 1 (NF1) mRNA. Nucleic Acids Res 28: 1307-1312. doi:10.1093/nar/28.6.1307. PubMed: 10684924.
[9]  Kaitsuka T, Tomizawa K, Matsushita M (2011) Transformation of eEF1Bdelta into heat-shock response transcription factor by alternative splicing. EMBO Rep 12: 673-681. doi:10.1038/embor.2011.82. PubMed: 21597468.
[10]  Plesofsky N, Brambl R (1999) Glucose metabolism in Neurospora is altered by heat shock and by disruption of HSP30. Biochim Biophys Acta 1449: 73-82. doi:10.1016/S0167-4889(98)00172-4. PubMed: 10076052.
[11]  Sonna LA, Fujita J, Gaffin SL, Lilly CM (2002) Invited review: Effects of heat and cold stress on mammalian gene expression. J Appl Physiol 92: 1725-1742. PubMed: 11896043.
[12]  Shapiro IM, Lubennikova EI (1968) Population kinetics of cells in tissue culture incubated at low temperature. Exp Cell Res 49: 305-316. doi:10.1016/0014-4827(68)90182-1. PubMed: 5761387.
[13]  Creagh EM, Sheehan D, Cotter TG (2000) Heat shock proteins--modulators of apoptosis in tumour cells. Leukemia 14: 1161-1173. doi:10.1038/sj.leu.2401841. PubMed: 10914538.
[14]  Yang Y, Xing D, Zhou F, Chen Q (2010) Mitochondrial autophagy protects against heat shock-induced apoptosis through reducing cytosolic cytochrome c release and downstream caspase-3 activation. Biochem Biophys Res Commun 395: 190-195. doi:10.1016/j.bbrc.2010.03.155. PubMed: 20361931.
[15]  Swanlund JM, Kregel KC, Oberley TD (2008) Autophagy following heat stress: the role of aging and protein nitration. Autophagy 4: 936-939. PubMed: 18758235.
[16]  Nivon M, Richet E, Codogno P, Arrigo AP, Kretz-Remy C (2009) Autophagy activation by NFkappaB is essential for cell survival after heat shock. Autophagy 5: 766-783. PubMed: 19502777.
[17]  Hsu YL, Yu HS, Lin HC, Wu KY, Yang RC et al. (2011) Heat shock induces apoptosis through reactive oxygen species involving mitochondrial and death receptor pathways in corneal cells. Exp Eye Res 93: 405-412. doi:10.1016/j.exer.2011.06.005. PubMed: 21712031.
[18]  Ladomery M (1997) Multifunctional proteins suggest connections between transcriptional and post-transcriptional processes. Bioessays 19: 903-909. doi:10.1002/bies.950191010. PubMed: 9363684.
[19]  Nishiyama H, Higashitsuji H, Yokoi H, Itoh K, Danno S et al. (1997) Cloning and characterization of human CIRP (cold-inducible RNA-binding protein) cDNA and chromosomal assignment of the gene. Gene 204: 115-120. doi:10.1016/S0378-1119(97)00530-1. PubMed: 9434172.
[20]  Artero-Castro A, Callejas FB, Castellvi J, Kondoh H, Carnero A et al. (2009) Cold-inducible RNA-binding protein bypasses replicative senescence in primary cells through extracellular signal-regulated kinase 1 and 2 activation. Mol Cell Biol 29: 1855-1868. doi:10.1128/MCB.01386-08. PubMed: 19158277.
[21]  Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M et al. (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39: 44-84. doi:10.1016/j.biocel.2006.07.001. PubMed: 16978905.
[22]  Jian Z, Li K, Liu L, Zhang Y, Zhou Z et al. (2011) Heme oxygenase-1 protects human melanocytes from H2O2-induced oxidative stress via the Nrf2-ARE pathway. J Invest Dermatol 131: 1420-1427. doi:10.1038/jid.2011.56. PubMed: 21412259.
[23]  Hunt L, Hacker DL, Grosjean F, De Jesus M, Uebersax L et al. (2005) Low-temperature pausing of cultivated mammalian cells. Biotechnol Bioeng 89: 157-163. doi:10.1002/bit.20320. PubMed: 15584025.
[24]  Lehr JE, Pienta KJ (1998) Preferential adhesion of prostate cancer cells to a human bone marrow endothelial cell line. J Natl Cancer Inst 90: 118-123. doi:10.1093/jnci/90.2.118. PubMed: 9450571.
[25]  Sa Russell (2001) Molecular Cloning: A Laboratory Manual (3rd ed.). Cold Spring Harbor Laboratory Press.
[26]  Lambert CA, Colige AC, Munaut C, Lapière CM, Nusgens BV (2001) Distinct pathways in the over-expression of matrix metalloproteinases in human fibroblasts by relaxation of mechanical tension. Matrix Biol 20: 397-408. doi:10.1016/S0945-053X(01)00156-1. PubMed: 11691580.
[27]  Lambert CA, Colige AC, Lapière CM, Nusgens BV (2001) Coordinated regulation of procollagens I and III and their post-translational enzymes by dissipation of mechanical tension in human dermal fibroblasts. Eur J Cell Biol 80: 479-485. doi:10.1078/0171-9335-00181. PubMed: 11499790.
[28]  Mattson MP, Barger SW, Begley JG, Mark RJ (1995) Calcium, free radicals, and excitotoxic neuronal death in primary cell culture. Methods Cell Biol 46: 187-216. doi:10.1016/S0091-679X(08)61930-5. PubMed: 7541884.
[29]  Tanida I, Minematsu-Ikeguchi N, Ueno T, Kominami E (2005) Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy 1: 84-91. doi:10.4161/auto.1.2.1697. PubMed: 16874052.
[30]  Wei Y, Pattingre S, Sinha S, Bassik M, Levine B (2008) JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30: 678-688. doi:10.1016/j.molcel.2008.06.001. PubMed: 18570871.
[31]  Kim HJ, Kang BS, Park JW (2005) Cellular defense against heat shock-induced oxidative damage by mitochondrial NADP+ -dependent isocitrate dehydrogenase. Free Radic Res 39: 441-448. doi:10.1080/10715760500066265. PubMed: 16028369.
[32]  Mahrhofer H, Bürger S, Oppitz U, Flentje M, Djuzenova CS (2006) Radiation induced DNA damage and damage repair in human tumor and fibroblast cell lines assessed by histone H2AX phosphorylation. Int J Radiat Oncol Biol Phys 64: 573-580. doi:10.1016/j.ijrobp.2005.09.037. PubMed: 16414372.
[33]  Mineur P, Colige AC, Deroanne CF, Dubail J, Kesteloot F et al. (2007) Newly identified biologically active and proteolysis-resistant VEGF-A isoform VEGF111 is induced by genotoxic agents. J Cell Biol 179: 1261-1273. doi:10.1083/jcb.200703052. PubMed: 18086921.
[34]  Burdon RH (1987) Temperature and animal cell protein synthesis. Symp Soc Exp Biol 41: 113-133. PubMed: 3332481.
[35]  Al-Fageeh MB, Smales CM (2009) Cold-inducible RNA binding protein (CIRP) expression is modulated by alternative mRNAs. RNA 15: 1164-1176. doi:10.1261/rna.1179109. PubMed: 19398494.
[36]  Laios E, Rebeyka IM, Prody CA (1997) Characterization of cold-induced heat shock protein expression in neonatal rat cardiomyocytes. Mol Cell Biochem 173: 153-159. doi:10.1023/A:1006844114348. PubMed: 9278266.
[37]  Matijasevic Z, Snyder JE, Ludlum DB (1998) Hypothermia causes a reversible, p53-mediated cell cycle arrest in cultured fibroblasts. Oncol Res 10: 605-610. PubMed: 10367942.
[38]  Kaufmann H, Mazur X, Fussenegger M, Bailey JE (1999) Influence of low temperature on productivity, proteome and protein phosphorylation of CHO cells. Biotechnol Bioeng 63: 573-582. doi:10.1002/(SICI)1097-0290(19990605)63:5. PubMed: 10397813.
[39]  Rieder CL, Cole RW (2002) Cold-shock and the Mammalian cell cycle. Cell Cycle 1: 169-175. PubMed: 12429927.
[40]  Meloche S, Pouysségur J (2007) The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 26: 3227-3239. doi:10.1038/sj.onc.1210414. PubMed: 17496918.
[41]  Sakurai T, Itoh K, Higashitsuji H, Nonoguchi K, Liu Y et al. (2006) Cirp protects against tumor necrosis factor-alpha-induced apoptosis via activation of extracellular signal-regulated kinase. Biochim Biophys Acta 1763: 290-295. doi:10.1016/j.bbamcr.2006.02.007. PubMed: 16569452.
[42]  Guedez L, Stetler-Stevenson WG, Wolff L, Wang J, Fukushima P et al. (1998) In vitro suppression of programmed cell death of B cells by tissue inhibitor of metalloproteinases-1. J Clin Invest 102: 2002-2010. doi:10.1172/JCI2881. PubMed: 9835626.
[43]  Gregory CD, Milner AE (1994) Regulation of cell survival in Burkitt lymphoma: implications from studies of apoptosis following cold-shock treatment. Int J Cancer 57: 419-426. doi:10.1002/ijc.2910570321. PubMed: 8169005.
[44]  Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8: 741-752. doi:10.1038/nrm2239. PubMed: 17717517.
[45]  H?yer-Hansen M, J??ttel? M (2007) AMP-activated protein kinase: a universal regulator of autophagy? Autophagy 3: 381-383. PubMed: 17457036.
[46]  Yorimitsu T, Nair U, Yang Z, Klionsky DJ (2006) Endoplasmic reticulum stress triggers autophagy. J Biol Chem 281: 30299-30304. doi:10.1074/jbc.M607007200. PubMed: 16901900.
[47]  Li S, Zhou Y, Fan J, Cao S, Cao T et al. (2011) Heat shock protein 72 enhances autophagy as a protective mechanism in lipopolysaccharide-induced peritonitis in rats. Am J Pathol 179: 2822-2834. doi:10.1016/j.ajpath.2011.08.013. PubMed: 22001349.
[48]  Lu Z, Dono K, Gotoh K, Shibata M, Koike M et al. (2005) Participation of autophagy in the degeneration process of rat hepatocytes after transplantation following prolonged cold preservation. Arch Histol Cytol 68: 71-80. doi:10.1679/aohc.68.71. PubMed: 15827380.
[49]  Kroemer G, Mari?o G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40: 280-293. doi:10.1016/j.molcel.2010.09.023. PubMed: 20965422.
[50]  Shkreta L, Froehlich U, Paquet ER, Toutant J, Elela SA et al. (2008) Anticancer drugs affect the alternative splicing of Bcl-x and other human apoptotic genes. Mol Cancer Ther 7: 1398-1409. doi:10.1158/1535-7163.MCT-08-0192. PubMed: 18566212.
[51]  Nicholls CD, Shields MA, Lee PW, Robbins SM, Beattie TL (2004) UV-dependent alternative splicing uncouples p53 activity and PIG3 gene function through rapid proteolytic degradation. J Biol Chem 279: 24171-24178. doi:10.1074/jbc.M401049200. PubMed: 15067011.
[52]  Rauen U, Polzar B, Stephan H, Mannherz HG, de Groot H (1999) Cold-induced apoptosis in cultured hepatocytes and liver endothelial cells: mediation by reactive oxygen species. FASEB J 13: 155-168. PubMed: 9872940.
[53]  Rauen U, Petrat F, Li T, De Groot H (2000) Hypothermia injury/cold-induced apoptosis--evidence of an increase in chelatable iron causing oxidative injury in spite of low O2-/H2O2 formation. FASEB J 14: 1953-1964. doi:10.1096/fj.00-0071com. PubMed: 11023979.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133