WRINKLED1 (AtWRI1) is a key transcription factor in the regulation of plant oil synthesis in seed and non-seed tissues. The structural features of WRI1 important for its function are not well understood. Comparison of WRI1 orthologs across many diverse plant species revealed a conserved 9 bp exon encoding the amino acids “VYL”. Site-directed mutagenesis of amino acids within the ‘VYL’ exon of AtWRI1 failed to restore the full oil content of wri1-1 seeds, providing direct evidence for an essential role of this small exon in AtWRI1 function. Arabidopsis WRI1 is predicted to have three alternative splice forms. To understand expression of these splice forms we performed RNASeq of Arabidopsis developing seeds and queried other EST and RNASeq databases from several tissues and plant species. In all cases, only one splice form was detected and VYL was observed in transcripts of all WRI1 orthologs investigated. We also characterized a phylogenetically distant WRI1 ortholog (EgWRI1) as an example of a non-seed isoform that is highly expressed in the mesocarp tissue of oil palm. The C-terminal region of EgWRI1 is over 90 amino acids shorter than AtWRI1 and has surprisingly low sequence conservation. Nevertheless, the EgWRI1 protein can restore multiple phenotypes of the Arabidopsis wri1-1 loss-of-function mutant, including reduced seed oil, the “wrinkled” seed coat, reduced seed germination, and impaired seedling establishment. Taken together, this study provides an example of combining phylogenetic analysis with mutagenesis, deep-sequencing technology and computational analysis to examine key elements of the structure and function of the WRI1 plant transcription factor.
References
[1]
Focks N, Benning C (1998) wrinkled1: A novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol 118: 91-101. doi:10.1104/pp.118.1.91. PubMed: 9733529.
[2]
Cernac A, Benning C (2004) WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J 40: 575-585. doi:10.1111/j.1365-313X.2004.02235.x. PubMed: 15500472.
[3]
Masaki T, Mitsui N, Tsukagoshi H, Nishii T, Morikami A et al. (2005) ACTIVATOR of Spomin::LUC1/WRINKLED1 of Arabidopsis thaliana transactivates sugar-inducible promoters. Plant Cell Physiol 46: 547-556. doi:10.1093/pcp/pci072. PubMed: 15753106.
[4]
Ruuska SA, Girke T, Benning C, Ohlrogge JB (2002) Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell 14: 1191-1206. doi:10.1105/tpc.000877. PubMed: 12084821.
[5]
Maeo K, Tokuda T, Ayame A, Mitsui N, Kawai T et al. (2009) An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J 60: 476-487. doi:10.1111/j.1365-313X.2009.03967.x. PubMed: 19594710.
[6]
Baud S, Mendoza MS, To A, Harsco?t E, Lepiniec L et al. (2007) WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J 50: 825-838. doi:10.1111/j.1365-313X.2007.03092.x. PubMed: 17419836.
[7]
Peng FY, Weselake RJ (2011) Gene coexpression clusters and putative regulatory elements underlying seed storage reserve accumulation in Arabidopsis. BMC Genomics 12: 286. doi:10.1186/1471-2164-12-286. PubMed: 21635767.
[8]
Li H, Peng Z, Yang X, Wang W, Fu J et al. (2012) Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet 45: 43-50. doi:10.1038/ng.2484. PubMed: 23242369.
[9]
Baud S, Wuillème S, To A, Rochat C, Lepiniec L (2009) Role of WRINKLED1 in the transcriptional regulation of glycolytic and fatty acid biosynthetic genes in Arabidopsis. Plant J 60: 933-947. doi:10.1111/j.1365-313X.2009.04011.x. PubMed: 19719479.
[10]
Liu J, Hua W, Zhan G, Wei F, Wang X et al. (2010) Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus. Plant Physiol Biochem 48: 9-15. doi:10.1016/j.plaphy.2009.09.007. PubMed: 19828328.
Shen B, Allen WB, Zheng P, Li C, Glassman K et al. (2010) Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize. Plant Physiol 153: 980-987. doi:10.1104/pp.110.157537. PubMed: 20488892.
[13]
Cernac A, Andre C, Hoffmann-Benning S, Benning C (2006) WRI1 is required for seed germination and seedling establishment. Plant Physiol 141: 745-757. doi:10.1104/pp.106.079574. PubMed: 16632590.
[14]
Troncoso-Ponce MA, Kilaru A, Cao X, Durrett TP, Fan J et al. (2011) Comparative deep transcriptional profiling of four developing oilseeds. Plant J 68: 1014-1027. doi:10.1111/j.1365-313X.2011.04751.x. PubMed: 21851431.
[15]
Bourgis F, Kilaru A, Cao X, Ngando-Ebongue GF, Drira N et al. (2011) Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning. Proc Natl Acad Sci U S A 108: 12527-12532. doi:10.1073/pnas.1106502108. PubMed: 21709233.
[16]
Tranbarger TJ, Dussert S, Jo?t T, Argout X, Summo M et al. (2011) Regulatory mechanisms underlying oil palm fruit mesocarp maturation, ripening, and functional specialization in lipid and carotenoid metabolism. Plant Physiol 156: 564-584. doi:10.1104/pp.111.175141. PubMed: 21487046.
[17]
To A, Joubès J, Barthole G, Lécureuil A, Scagnelli A et al. (2012) WRINKLED Transcription Factors Orchestrate Tissue-Specific Regulation of Fatty Acid Biosynthesis in Arabidopsis. Plant Cell 24: 5007-5023. doi:10.1105/tpc.112.106120. PubMed: 23243127.
[18]
Seo PJ, Kim MJ, Ryu JY, Jeong EY, Park CM (2011) Two splice variants of the IDD14 transcription factor competitively form nonfunctional heterodimers which may regulate starch metabolism. Nat Communications 2: 303. doi:10.1038/ncomms1303. PubMed: 21556057.
[19]
Filichkin SA, Priest HD, Givan SA, Shen R, Bryant DW et al. (2010) Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res 20: 45-58. doi:10.1101/gr.093302.109. PubMed: 19858364.
[20]
Reddy AS (2007) Alternative splicing of pre-messenger RNAs in plants in the genomic era. Annu Rev Plant Biol 58: 267-294. doi:10.1146/annurev.arplant.58.032806.103754. PubMed: 17222076.
[21]
Kriechbaumer V, Wang P, Hawes C, Abell BM (2012) Alternative splicing of the auxin biosynthesis gene YUCCA4 determines its subcellular compartmentation. Plant J 70: 292-302. doi:10.1111/j.1365-313X.2011.04866.x. PubMed: 22233288.
[22]
Seo PJ, Park MJ, Lim MH, Kim SG, Lee M et al. (2012) A self-regulatory circuit of CIRCADIAN CLOCK-ASSOCIATED1 underlies the circadian clock regulation of temperature responses in Arabidopsis. Plant Cell 24: 2427-2442. doi:10.1105/tpc.112.098723. PubMed: 22715042.
[23]
Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379: 633-646. PubMed: 9687012.
[24]
Okamuro JK, Caster B, Villarroel R, Van Montagu M, Jofuku KD (1997) The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci U S A 94: 7076-7081. doi:10.1073/pnas.94.13.7076. PubMed: 9192694.
[25]
Volfovsky N, Haas BJ, Salzberg SL (2003) Computational discovery of internal micro-exons. Genome Res 13: 1216-1221. doi:10.1101/gr.677503. PubMed: 12799353.
[26]
Triezenberg SJ (1995) Structure and function of transcriptional activation domains. Curr Opin Genet Dev 5: 190-196. doi:10.1016/0959-437X(95)80007-7. PubMed: 7613088.
[27]
Baralle D, Baralle M (2005) Splicing in action: assessing disease causing sequence changes. J Med Genet 42: 737-748. doi:10.1136/jmg.2004.029538. PubMed: 16199547.
[28]
Davis CA, Grate L, Spingola M, Ares M Jr. (2000) Test of intron predictions reveals novel splice sites, alternatively spliced mRNAs and new introns in meiotically regulated genes of yeast. Nucleic Acids Res 28: 1700-1706. doi:10.1093/nar/28.8.1700. PubMed: 10734188.
[29]
Krizek BA (2003) AINTEGUMENTA utilizes a mode of DNA recognition distinct from that used by proteins containing a single AP2 domain. Nucleic Acids Res 31: 1859-1868. doi:10.1093/nar/gkg292. PubMed: 12655002.
[30]
Earley KW, Haag JR, Pontes O, Opper K, Juehne T et al. (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J 45: 616-629. doi:10.1111/j.1365-313X.2005.02617.x. PubMed: 16441352.
[31]
Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743. doi:10.1046/j.1365-313x.1998.00343.x. PubMed: 10069079.
[32]
Suzuki Y, Kawazu T, Koyama H (2004) RNA isolation from siliques, dry seeds, and other tissues of Arabidopsis thaliana. BioTechniques 37: 542, 544. PubMed: 15517963.
[33]
Li Y, Beisson F, Pollard M, Ohlrogge J (2006) Oil content of Arabidopsis seeds: the influence of seed anatomy, light and plant-to-plant variation. Phytochemistry 67: 904-915. doi:10.1016/j.phytochem.2006.02.015. PubMed: 16600316.