Background An increasing number of animal and human studies are indicating that inflammation is associated with behavioral disorders including aggression. This study investigates the association between chronic physical aggression during childhood and plasma cytokine levels in early adulthood. Methodology/Principal Findings Two longitudinal studies were used to select males on a chronic physical aggression trajectory from childhood to adolescence (n = 7) and a control group from the same background (n = 25). Physical aggression was assessed yearly by teachers from childhood to adolescence and plasma levels of 10 inflammatory cytokines were assessed at age 26 and 28 years. Compared to the control group, males on a chronic physical aggression trajectory from childhood to adolescence had consistently lower plasma levels of five cytokines: lower pro-inflammatory interleukins IL-1α (T(28.7) = 3.48, P = 0.002) and IL-6 (T(26.9) = 3.76, P = 0.001), lower anti-inflammatory interleukin IL-4 (T(27.1) = 4.91, P = 0.00004) and IL-10 (T(29.8) = 2.84, P = 0.008) and lower chemokine IL-8 (T(26) = 3.69, P = 0.001). The plasma levels of four cytokines accurately predicted aggressive and control group membership for all subjects. Conclusions/Significance Physical aggression of boys during childhood is a strong predictor of reduced plasma levels of cytokines in early adulthood. The causal and physiological relations underlying this association should be further investigated since animal data suggest that some cytokines such as IL-6 and IL-1β play a causal role in aggression.
References
[1]
Krug EG, Mercy JA, Dahlberg LL, Zwi AB (2002) The world report on violence and health. Lancet 360: 1083–1088.
[2]
Broidy LM, Nagin DS, Tremblay RE, Bates JE, Brame B, et al. (2003) Developmental trajectories of childhood disruptive behaviors and adolescent delinquency: a six-site, cross-national study. Dev Psychol 39: 222–245.
[3]
Cote SM, Vaillancourt T, LeBlanc JC, Nagin DS, Tremblay RE (2006) The development of physical aggression from toddlerhood tαo pre-adolescence: a nation wide longitudinal study of Canadian children. J Abnorm Child Psychol 34: 71–85.
[4]
Tremblay RE (2010) Developmental origins of disruptive behaviour problems: the ‘original sin’ hypothesis, epigenetics and their consequences for prevention. J Child Psychol Psychiatry 51: 341–367.
[5]
Nagin D, Tremblay RE (1999) Trajectories of boys’ physical aggression, opposition, and hyperactivity on the path to physically violent and nonviolent juvenile delinquency. Child Dev 70: 1181–1196.
[6]
Barker ED, Boivin M, Brendgen M, Fontaine N, Arseneault L, et al. (2008) Predictive validity and early predictors of peer-victimization trajectories in preschool. Arch Gen Psychiatry 65: 1185–1192.
[7]
Barker ED, Seguin JR, White HR, Bates ME, Lacourse E, et al. (2007) Developmental trajectories of male physical violence and theft: relations to neurocognitive performance. Arch Gen Psychiatry 64: 592–599.
[8]
Kokko K, Puilkkinen L (2006) Aggression in childhood and long-term unemployment in adulthood: a cycle of maladaptation and some protective factors. Dev Psychol 36: 463–472.
[9]
Seguin JR, Pihl RO, Harden PW, Tremblay RE, Boulerice B (1995) Cognitive and neuropsychological characteristics of physically aggressive boys. J Abnorm Psychol 104: 614–624.
[10]
Campbell SB, Spieker S, Burchinal M, Poe MD (2006) Trajectories of aggression from toddlerhood to age 9 predict academic and social functioning through age 12. J Child Psychol Psychiatry 47: 791–800.
[11]
Campbell SB, Spieker S, Vandergrift N, Belsky J, Burchinal M (2010) Predictors and sequelae of trajectories of physical aggression in school-age boys and girls. Dev Psychopathol 22: 133–150.
[12]
Cote SM, Boivin M, Nagin DS, Japel C, Xu Q, et al. (2007) The role of maternal education and nonmaternal care services in the prevention of children’s physical aggression problems. Arch Gen Psychiatry 64: 1305–1312.
[13]
Nagin DS, Tremblay RE (2001) Parental and early childhood predictors of persistent physical aggression in boys from kindergarten to high school. Arch Gen Psychiatry 58: 389–394.
[14]
Tremblay RE, Nagin DS, Seguin JR, Zoccolillo M, Zelazo PD, et al. (2004) Physical aggression during early childhood: trajectories and predictors. Pediatrics 114: e43–50.
[15]
Bauer ME, Wieck A, Lopes RP, Teixeira AL, Grassi-Oliveira R (2010) Interplay between neuroimmunoendocrine systems during post-traumatic stress disorder: a minireview. Neuroimmunomodulation 17: 192–195.
[16]
Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, et al. (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67: 446–457.
[17]
Groer MW, Morgan K (2007) Immune, health and endocrine characteristics of depressed postpartum mothers. Psychoneuroendocrinology 32: 133–139.
[18]
Hoge EA, Brandstetter K, Moshier S, Pollack MH, Wong KK, et al. (2009) Broad spectrum of cytokine abnormalities in panic disorder and posttraumatic stress disorder. Depress Anxiety 26: 447–455.
[19]
Janelidze S, Mattei D, Westrin A, Traskman-Bendz L, Brundin L (2010) Cytokine levels in the blood may distinguish suicide attempters from depressed patients. Brain Behav Immun 25: 335–339.
[20]
Kawamura A, Yoshikawa T, Takahashi T, Hayashi T, Takahashi E, et al. (2001) Randomized trial of phosphodiesterase inhibitors versus catecholamines in patients with acutely decompensated heart failure. Jpn Circ J 65: 858–862.
[21]
Koo JW, Duman RS (2008) IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci U S A 105: 751–756.
[22]
Misener VL, Gomez L, Wigg KG, Luca P, King N, et al. (2008) Cytokine Genes TNF, IL1A, IL1B, IL6, IL1RN and IL10, and childhood-onset mood disorders. Neuropsychobiology 58: 71–80.
[23]
O’Brien SM, Scott LV, Dinan TG (2004) Cytokines: abnormalities in major depression and implications for pharmacological treatment. Hum Psychopharmacol 19: 397–403.
[24]
Pace TW, Hu F, Miller AH (2007) Cytokine-effects on glucocorticoid receptor function: relevance to glucocorticoid resistance and the pathophysiology and treatment of major depression. Brain Behav Immun 21: 9–19.
[25]
Smith AK, Conneely KN, Kilaru V, Mercer KB, Weiss TE, et al. (2011) Differential immune system DNA methylation and cytokine regulation in post-traumatic stress disorder. Am J Med Genet B Neuropsychiatr Genet 156B: 700–708.
[26]
von Kanel R, Hepp U, Kraemer B, Traber R, Keel M, et al. (2007) Evidence for low-grade systemic proinflammatory activity in patients with posttraumatic stress disorder. J Psychiatr Res 41: 744–752.
[27]
Zalcman SS, Siegel A (2006) The neurobiology of aggression and rage: role of cytokines. Brain Behav Immun 20: 507–514.
[28]
Siegel A, Bhatt S, Bhatt R, Zalcman SS (2007) The neurobiological bases for development of pharmacological treatments of aggressive disorders. Curr Neuropharmacol 5: 135–147.
[29]
Nelson RJ, Chiavegatto S (2001) Molecular basis of aggression. Trends Neurosci 24: 713–719.
[30]
Marsland AL, Prather AA, Petersen KL, Cohen S, Manuck SB (2008) Antagonistic characteristics are positively associated with inflammatory markers independently of trait negative emotionality. Brain Behav Immun 22: 753–761.
[31]
Suarez EC, Lewis JG, Kuhn C (2002) The relation of aggression, hostility, and anger to lipopolysaccharide-stimulated tumor necrosis factor (TNF)-alpha by blood monocytes from normal men. Brain Behav Immun 16: 675–684.
[32]
Carpenter LL, Gawuga CE, Tyrka AR, Lee JK, Anderson GM, et al. (2011) Association between plasma IL-6 response to acute stress and early-life adversity in healthy adults. Neuropsychopharmacology 35: 2617–2623.
[33]
Chida Y, Sudo N, Sonoda J, Hiramoto T, Kubo C (2007) Early-life psychological stress exacerbates adult mouse asthma via the hypothalamus-pituitary-adrenal axis. Am J Respir Crit Care Med 175: 316–322.
[34]
Elenkov IJ (2008) Neurohormonal-cytokine interactions: implications for inflammation, common human diseases and well-being. Neurochem Int 52: 40–51.
[35]
Alleva E, Cirulli F, Bianchi M, Bondiolotti GP, Chiarotti F, et al. (1998) Behavioural characterization of interleukin-6 overexpressing or deficient mice during agonistic encounters. Eur J Neurosci 10: 3664–3672.
[36]
Cirulli F, De Acetis L, Alleva E (1998) Behavioral effects of peripheral interleukin-1 administration in adult CD-1 mice: specific inhibition of the offensive components of intermale agonistic behavior. Brain Res 791: 308–312.
[37]
Petitto JM, Lysle DT, Gariepy JL, Lewis MH (1994) Association of genetic differences in social behavior and cellular immune responsiveness: effects of social experience. Brain Behav Immun 8: 111–122.
[38]
Granger DA, Hood KE, Dreschel NA, Sergeant E, Likos A (2001) Developmental effects of early immune stress on aggressive, socially reactive, and inhibited behaviors. Dev Psychopathol 13: 599–610.
[39]
Chen E, Hanson MD, Paterson LQ, Griffin MJ, Walker HA, et al. (2006) Socioeconomic status and inflammatory processes in childhood asthma: the role of psychological stress. J Allergy Clin Immunol 117: 1014–1020.
[40]
Seguin JR, Nagin D, Assaad JM, Tremblay RE (2004) Cognitive-neuropsychological function in chronic physical aggression and hyperactivity. J Abnorm Psychol 113: 603–613.
[41]
van Bokhoven I, Van Goozen SH, van Engeland H, Schaal B, Arseneault L, et al. (2005) Salivary cortisol and aggression in a population-based longitudinal study of adolescent males. J Neural Transm 112: 1083–1096.
[42]
Turnbull AV, Rivier CL (1999) Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action. Physiol Rev 79: 1–71.
[43]
Ferris CF (2005) Vasopressin/oxytocin and aggression. Novartis Found Symp 268: 190–198; discussion 198–200, 242–153.
[44]
Shibasaki T, Hotta M, Sugihara H, Wakabayashi I (1998) Brain vasopressin is involved in stress-induced suppression of immune function in the rat. Brain Res 808: 84–92.
[45]
Zhao L, Brinton RD (2004) Suppression of proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha in astrocytes by a V1 vasopressin receptor agonist: a cAMP response element-binding protein-dependent mechanism. J Neurosci 24: 2226–2235.
[46]
Brebner K, Hayley S, Zacharko R, Merali Z, Anisman H (2000) Synergistic effects of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha: central monoamine, corticosterone, and behavioral variations. Neuropsychopharmacology 22: 566–580.
[47]
Barkhudaryan N, Dunn AJ (1999) Molecular mechanisms of actions of interleukin-6 on the brain, with special reference to serotonin and the hypothalamo-pituitary-adrenocortical axis. Neurochem Res 24: 1169–1180.
[48]
Capuron L, Miller AH (2011) Immune system to brain signaling: neuropsychopharmacological implications. Pharmacol Ther 130: 226–238.
[49]
Durk T, Panther E, Muller T, Sorichter S, Ferrari D, et al. (2005) 5-Hydroxytryptamine modulates cytokine and chemokine production in LPS-primed human monocytes via stimulation of different 5-HTR subtypes. Int Immunol 17: 599–606.
[50]
Holliday MR, Banks EM, Dearman RJ, Kimber I, Coleman JW (1994) Interactions of IFN-gamma with IL-3 and IL-4 in the regulation of serotonin and arachidonate release from mouse peritoneal mast cells. Immunology 82: 70–74.
[51]
Alesci S, Martinez PE, Kelkar S, Ilias I, Ronsaville DS, et al. (2005) Major depression is associated with significant diurnal elevations in plasma interleukin-6 levels, a shift of its circadian rhythm, and loss of physiological complexity in its secretion: clinical implications. J Clin Endocrinol Metab 90: 2522–2530.
[52]
Sothern RB, Roitman-Johnson B, Kanabrocki EL, Yager JG, Roodell MM, et al. (1995) Circadian characteristics of circulating interleukin-6 in men. J Allergy Clin Immunol 95: 1029–1035.
[53]
Vgontzas AN, Zoumakis M, Papanicolaou DA, Bixler EO, Prolo P, et al. (2002) Chronic insomnia is associated with a shift of interleukin-6 and tumor necrosis factor secretion from nighttime to daytime. Metabolism 51: 887–892.
[54]
Dimitrov S, Lange T, Tieken S, Fehm HL, Born J (2004) Sleep associated regulation of T helper 1/T helper 2 cytokine balance in humans. Brain Behav Immun 18: 341–348.
[55]
Socha LA, Gowardman J, Silva D, Correcha M, Petrosky N (2006) Elevation in interleukin 13 levels in patients diagnosed with systemic inflammatory response syndrome. Intensive Care Med 32: 244–250.
[56]
Petrovsky N, Harrison LC (1998) The chronobiology of human cytokine production. Int Rev Immunol 16: 635–649.
[57]
Pingault JB, Tremblay RE, Vitaro F, Carbonneau R, Genolini C, et al.. (2011) Childhood Trajectories of Inattention and Hyperactivity and Prediction of Educational Attainment in Early Adulthood: A 16-Year Longitudinal Population-Based Study. Am J Psychiatry.
[58]
Huang RP (2004) Cytokine protein arrays. Methods Mol Biol 264: 215–231.
[59]
Tremblay RE, Loeber R, Gagnon C, Charlebois P, Larivee S, et al. (1991) Disruptive boys with stable and unstable high fighting behavior patterns during junior elementary school. J Abnorm Child Psychol 19: 285–300.
[60]
Romano E, Tremblay RE, Vitaro F, Zoccolillo M, Pagani L (2001) Prevalence of psychiatric diagnoses and the role of perceived impairment: findings from an adolescent community sample. J Child Psychol Psychiatry 42: 451–461.
[61]
R Development Core Team (2007) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
[62]
Zwillinger D, Kokoska S (2000) CRC Standard Probability and Statistics Tables and Formulae: CRC Press.