Background Venous thromboembolism (VTE), comprising deep vein thrombosis (DVT) and pulmonary embolism (PE), is a significant source of mortality and morbidity worldwide. By analyzing data of the 2010 Nationwide Inpatient Sample from the Agency for Healthcare Research and Quality (AHRQ), we evaluated the predictive accuracy of the AHRQ’s 29-comorbidity index with in-hospital death among US adult hospitalizations with a diagnosis of VTE. Methods We assessed the case-fatality and prevalence of comorbidities among a sample of 153,518 adult hospitalizations with a diagnosis of VTE that comprised 87,605 DVTs and 65,913 PEs (with and without DVT). We estimated adjusted odds ratios and 95% confidence intervals with multivariable logistic regression models by using comorbidities as predictors and status of in-hospital death as an outcome variable. We assessed the c-statistics for the predictive accuracy of the logistic regression models. Results In 2010, approximately 41,944 in-hospital deaths (20,212 with DVT and 21,732 with PE) occurred among 770,137 hospitalizations with a diagnosis of VTE. When compared separately to hospitalizations with VTE, DVT, or PE that had no corresponding comorbidities, congestive heart failure, chronic pulmonary disease, coagulopathy, liver disease, lymphoma, fluid and electrolyte disorders, metastatic cancer, other neurological disorders, peripheral vascular disorders, pulmonary circulation disorders, renal failure, solid tumor without metastasis, and weight loss were positively and independently associated with 10%?125% increased likelihoods of in-hospital death. The c-statistic values ranged from 0.776 to 0.802. Conclusion The results of this study indicated that comorbidity was associated independently with risk of death among hospitalizations with VTE and among hospitalizations with DVT or PE. The AHRQ 29-comorbidity index provides acceptable to excellent predictive accuracy for in-hospital deaths among adult hospitalizations with VTE and among those with DVT or PE.
References
[1]
DHHS (2008) The Surgeon General’s Call to Action to Prevent Deep Vein Thrombosis and Pulmonary Embolism. Office of the Surgeon General. U.S. Department of Health & Human Services. Washington, DC. Availabe URL (accessed August 8, 2011): http://www.surgeongeneral.gov/topics/dee?pvein/calltoaction/call-to-action-on-dvt?-2008.pdf.
[2]
Cohen AT, Tapson VF, Bergmann JF, Goldhaber SZ, Kakkar AK, et al. (2008) Venous thromboembolism risk and prophylaxis in the acute hospital care setting (ENDORSE study): a multinational cross-sectional study. Lancet 371: 387–94.
[3]
Tapson VF, Decousus H, Pini M, Chong BH, Froehlich JB, et al. (2007) Venous thromboembolism prophylaxis in acutely ill hospitalized medical patients: findings from the International Medical Prevention Registry on Venous Thromboembolism. Chest 132: 936–45.
[4]
Heit JA (2005) Venous thromboembolism: disease burden, outcomes and risk factors. J Thromb Haemost 3: 1611–7.
[5]
DHHS (2008) The Surgeon General’s Call to Action to Prevent Deep Vein Thrombosis and Pulmonary Embolism. Office of the Surgeon General. U.S. Department of Health & Human Services. Washington, DC. Availabe URL: http://www.surgeongeneral.gov/topics/dee?pvein/calltoaction/call-to-action-on-dvt?-2008.pdf.
[6]
CDC (2012) Venous Thromboembolism in Adult Hospitalizations – United States, 2007–2009. Centers for Disease Control and Prevention (CDC). MMWR Morb Mortal Wkly Rep 61: 402–4.
[7]
Spencer FA, Lessard D, Emery C, Reed G, Goldberg RJ (2007) Venous thromboembolism in the outpatient setting. Arch Intern Med 167: 1471–5.
[8]
Tsai J, Grosse SD, Grant AM, Reyes NL, Hooper WC, et al. (2012) Correlates of In-Hospital Deaths among Hospitalizations with Pulmonary Embolism: Findings from the 2001?2008 National Hospital Discharge Survey. PLoS One 7: e34048.
[9]
Tsai J, Grosse SD, Grant AM, Hooper WC, Atrash HK (2012) Trends in in-hospital deaths among hospitalizations with pulmonary embolism. Arch Intern Med 172: 960–1.
[10]
Valderas JM, Starfield B, Sibbald B, Salisbury C, Roland M (2009) Defining comorbidity: implications for understanding health and health services. Annals of family medicine 7: 357–63.
[11]
Kelly J, Rudd A, Lewis RR, Hunt BJ (2002) Plasma d-dimers in the diagnosis of venous thromboembolism. Arch Intern Med 162: 747–56.
[12]
Kelly J, Hunt BJ, Rudd A, Lewis RR (2002) Pulmonary embolism and pneumonia may be confounded after acute stroke and may co-exist. Age Ageing 31: 235–9.
[13]
Smith SB, Geske JB, Morgenthaler TI (2012) Risk Factors Associated with Delayed Diagnosis of Acute Pulmonary Embolism. J Emerg Med 42: 1–6.
[14]
Palareti G, Cosmi B (2009) Bleeding with anticoagulation therapy - who is at risk, and how best to identify such patients. Thromb Haemost 102: 268–78.
[15]
Gross CP, Galusha DH, Krumholz HM (2007) The impact of venous thromboembolism on risk of death or hemorrhage in older cancer patients. J Gen Intern Med 22: 321–6.
[16]
Lin J, Proctor MC, Varma M, Greenfield LJ, Upchurch Jr GR, et al. (2003) Factors associated with recurrent venous thromboembolism in patients with malignant disease. J Vascular Surg 37: 976–83.
[17]
Nijkeuter M, Sohne M, Tick LW, Kamphuisen PW, Kramer MH, et al. (2007) The natural course of hemodynamically stable pulmonary embolism: Clinical outcome and risk factors in a large prospective cohort study. Chest 131: 517–23.
[18]
Lee SJ, Lindquist K, Segal MR, Covinsky KE (2006) Development and validation of a prognostic index for 4-year mortality in older adults. JAMA 295: 801–8.
[19]
Sachdev M, Sun JL, Tsiatis AA, Nelson CL, Mark DB, et al. (2004) The prognostic importance of comorbidity for mortality in patients with stable coronary artery disease. J Am Coll Cardiol 43: 576–82.
[20]
Piccirillo JF, Tierney RM, Costas I, Grove L, Spitznagel EL Jr (2004) Prognostic importance of comorbidity in a hospital-based cancer registry. JAMA 291: 2441–7.
[21]
Rius C, Perez G, Rodriguez-Sanz M, Fernandez E (2008) Group CS (2008) Comorbidity index was successfully validated among men but not in women. J Clin Epidemiol 61: 796–802.
[22]
Quail JM, Lix LM, Osman BA, Teare GF (2011) Comparing comorbidity measures for predicting mortality and hospitalization in three population-based cohorts. BMC health services research 11: 146.
[23]
Byles JE, D’Este C, Parkinson L, O’Connell R, Treloar C (2005) Single index of multimorbidity did not predict multiple outcomes. J Clin Epidemiol 58: 997–1005.
[24]
Southern DA, Quan H, Ghali WA (2004) Comparison of the Elixhauser and Charlson/Deyo methods of comorbidity measurement in administrative data. Med Care 42: 355–60.
[25]
Dominick KL, Dudley TK, Coffman CJ, Bosworth HB (2005) Comparison of three comorbidity measures for predicting health service use in patients with osteoarthritis. Arthritis and rheumatism 53: 666–72.
[26]
Chu YT, Ng YY, Wu SC (2010) Comparison of different comorbidity measures for use with administrative data in predicting short- and long-term mortality. BMC health services research 10: 140.
[27]
AHRQ (2012) Comorbidity Software, Version 3.7. Agency for Healthcare Research and Quality (AHRQ). Rockville, MD. URL accessed on 3/22/2012: http://www.hcup-us.ahrq.gov/toolssoftwar?e/comorbidity/comorbidity.jsp.
[28]
Elixhauser A, Steiner C, Harris DR, Coffey RM (1998) Comorbidity measures for use with administrative data. Med Care 36: 8–27.
[29]
AHRQ (2012) HCUP Frequently Asked Questions. Agency for Healthcare Research and Quality (AHRQ). Rockville, MD. URL accessed on 5/24/2013: http://www.hcup-us.ahrq.gov/tech_assist/?faq.jsp.
[30]
AHRQ (2012) Introduction to the HCUP Nationwide Inpatient Sample (NIS). Healthcare Cost and Utilization Project (HCUP). 2010. Agency for Healthcare Research and Quality (AHRQ). Rockville, MD. URL accessed on 11/09/2012: http://www.hcup-us.ahrq.gov/db/nation/ni?s/NIS_Introduction_2010.jsp.
[31]
Charlson ME, Pompei P, Ales KL, MacKenzie CR (1987) A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. Journal of chronic diseases 40: 373–83.
[32]
Krivak TC, Zorn KK (2007) Venous thromboembolism in obstetrics and gynecology. Obstet Gynecol 109: 761–77.
[33]
James A, Jamison M, Brancazio L, Myers E (2006) Venous thromboembolism during pregnancy and the postpartum period: incidence, risk factors, and mortality. American journal of obstetrics and gynecology 194: 1311–5.
[34]
AHRQ (2012) Procedure Classes 2012. Agency for Healthcare Research and Quality (AHRQ). Rockville, MD. URL accessed on 7/12/2012: http://www.hcup-us.ahrq.gov/toolssoftwar?e/procedure/procedure.jsp.
[35]
AHRQ (2012) Major operating room procedure indicator. Agency for Healthcare Research and Quality (AHRQ). Rockville, MD. URL accessed on 7/12/2012: http://www.hcup-us.ahrq.gov/db/vars/orpr?oc/nisnote.jsp.
[36]
Hosmer DW, Lemeshow S (2010) Applied logistic regression, 2nd Edition. New York, NY: John Wiley & Sons, Inc.
[37]
Austin PC, Steyerberg EW (2012) Interpreting the concordance statistic of a logistic regression model: relation to the variance and odds ratio of a continuous explanatory variable. BMC Med Res Methodol 12: 82.
[38]
Cook NR (2007) Use and Misuse of the Receiver Operating Characteristic Curve in Risk Prediction. Circulation 115: 928–35.
[39]
Ocak G, Vossen CY, Verduijn M, Dekker FW, Rosendaal FR, et al. (2013) Risk of venous thrombosis in patients with major illnesses: results from the MEGA study. J Thromb Haemost 11: 116–23.
[40]
van Walraven C, Austin PC, Jennings A, Quan H, Forster AJ (2009) A modification of the Elixhauser comorbidity measures into a point system for hospital death using administrative data. Med Care 47: 626–33.
[41]
Johnston JA, Wagner DP, Timmons S, Welsh D, Tsevat J, et al. (2002) Impact of different measures of comorbid disease on predicted mortality of intensive care unit patients. Med Care 40: 929–40.
[42]
White RH, Garcia M, Sadeghi B, Tancredi DJ, Zrelak P, et al. (2010) Evaluation of the predictive value of ICD-9-CM coded administrative data for venous thromboembolism in the United States. Thromb Res 126: 61–7.