全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Modulation of NKG2D Expression in Human CD8+ T Cells Corresponding with Tuberculosis Drug Cure

DOI: 10.1371/journal.pone.0070063

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Biomarkers predicting tuberculosis treatment response and cure would facilitate drug development. This study investigated expression patterns of the co-stimulation molecule NKG2D in human tuberculosis and treatment to determine its potential usefulness as a host biomarker of tuberculosis drug efficacy. Methods Tuberculosis patients (n = 26) were recruited in Lahore, Pakistan, at diagnosis and followed up during treatment. Household contacts (n = 24) were also recruited. NKG2D expression was measured by qRT-PCR in RNA samples both ex vivo and following overnight mycobacterial stimulation in vitro. Protein expression of NKG2D and granzyme B was measured by flow cytometry. Results NKG2D expression in newly diagnosed tuberculosis patients was similar to household contacts in ex vivo RNA, but was higher following in vitro stimulation. The NKG2D expression was dramatically reduced by intensive phase chemotherapy, in both ex vivo blood RNA and CD8+ T cell protein expression, but then reverted to higher levels after the continuation phase in successfully treated patients. Conclusion The changes in NKG2D expression through successful treatment reflect modulation of the peripheral cytotoxic T cell response. This likely reflects firstly in vivo stimulation by live Mycobacterium tuberculosis, followed by the response to dead bacilli, antigen-release and finally immunopathology resolution. Such changes in host peripheral gene expression, alongside clinical and microbiological indices, could be developed into a biosignature of tuberculosis drug-induced cure to be used in future clinical trials.

References

[1]  WHO (2010) Global Tuberculosis Control Report.
[2]  Dorhoi A, Reece ST, Kaufmann SH (2011) For better or for worse: the immune response against Mycobacterium tuberculosis balances pathology and protection. Immunol Rev 240: 235–251.
[3]  Frieden TR, Sterling TR, Munsiff SS, Watt CJ, Dye C (2003) Tuberculosis. Lancet 362: 887–899.
[4]  van Rie A, Warren R, Richardson M, Victor TC, Gie RP, et al. (1999) Exogenous reinfection as a cause of recurrent tuberculosis after curative treatment. N Engl J Med 341: 1174–1179.
[5]  Walzl G, Ronacher K, Djoba Siawaya JF, Dockrell HM (2008) Biomarkers for TB treatment response: challenges and future strategies. J Infect 57: 103–109.
[6]  Walzl G, Ronacher K, Hanekom W, Scriba TJ, Zumla A (2011) Immunological biomarkers of tuberculosis. Nat Rev Immunol 11: 343–354.
[7]  Wallis RS, Wang C, Doherty TM, Onyebujoh P, Vahedi M, et al. (2010) Biomarkers for tuberculosis disease activity, cure, and relapse. Lancet Infect Dis 10: 68–69.
[8]  Nunn AJ, Phillips PP, Mitchison DA (2010) Timing of relapse in short-course chemotherapy trials for tuberculosis. Int J Tuberc Lung Dis 14: 241–242.
[9]  Woodworth JS, Behar SM (2006) Mycobacterium tuberculosis-specific CD8+ T cells and their role in immunity. Crit Rev Immunol 26: 317–352.
[10]  Winslow GM, Cooper A, Reiley W, Chatterjee M, Woodland DL (2008) Early T-cell responses in tuberculosis immunity. Immunol Rev 225: 284–299.
[11]  Smith SM, Brookes R, Klein MR, Malin AS, Lukey PT, et al. (2000) Human CD8+ CTL specific for the mycobacterial major secreted antigen 85A. J Immunol 165: 7088–7095.
[12]  Kamath AB, Woodworth J, Xiong X, Taylor C, Weng Y, et al. (2004) Cytolytic CD8+ T cells recognizing CFP10 are recruited to the lung after Mycobacterium tuberculosis infection. J Exp Med 200: 1479–1489.
[13]  Serbina NV, Flynn JL (1999) Early emergence of CD8(+) T cells primed for production of type 1 cytokines in the lungs of Mycobacterium tuberculosis-infected mice. Infect Immun 67: 3980–3988.
[14]  Kamath A, Woodworth JS, Behar SM (2006) Antigen-specific CD8+ T cells and the development of central memory during Mycobacterium tuberculosis infection. J Immunol 177: 6361–6369.
[15]  Canaday DH, Wilkinson RJ, Li Q, Harding CV, Silver RF, et al. (2001) CD4(+) and CD8(+) T cells kill intracellular Mycobacterium tuberculosis by a perforin and Fas/Fas ligand-independent mechanism. J Immunol 167: 2734–2742.
[16]  Stegelmann F, Bastian M, Swoboda K, Bhat R, Kiessler V, et al. (2005) Coordinate Expression of CC Chemokine Ligand 5, Granulysin, and Perforin in CD8+ T Cells Provides a Host Defense Mechanism against Mycobacterium tuberculosis. J Immunol 175: 7474–7483.
[17]  Sud D, Bigbee C, Flynn JL, Kirschner DE (2006) Contribution of CD8+ T cells to control of Mycobacterium tuberculosis infection. J Immunol 176: 4296–4314.
[18]  Obeidy P, Sharland AF (2009) NKG2D and its ligands. Int J Biochem Cell Biol 41: 2364–2367.
[19]  Burgess SJ, Maasho K, Masilamani M, Narayanan S, Borrego F, et al. (2008) The NKG2D receptor: immunobiology and clinical implications. Immunol Res 40: 18–34.
[20]  Champsaur M, Lanier LL (2010) Effect of NKG2D ligand expression on host immune responses. Immunol Rev 235: 267–285.
[21]  Raulet DH (2003) Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 3: 781–790.
[22]  Upshaw JL, Leibson PJ (2006) NKG2D-mediated activation of cytotoxic lymphocytes: unique signaling pathways and distinct functional outcomes. Semin Immunol 18: 167–175.
[23]  Das H, Groh V, Kuijl C, Sugita M, Morita CT, et al. (2001) MICA engagement by human Vgamma2Vdelta2 T cells enhances their antigen-dependent effector function. Immunity 15: 83–93.
[24]  Karimi M, Cao TM, Baker JA, Verneris MR, Soares L, et al. (2005) Silencing human NKG2D, DAP10, and DAP12 reduces cytotoxicity of activated CD8+ T cells and NK cells. J Immunol 175: 7819–7828.
[25]  Markiewicz MA, Carayannopoulos LN, Naidenko OV, Matsui K, Burack WR, et al. (2005) Costimulation through NKG2D enhances murine CD8+ CTL function: similarities and differences between NKG2D and CD28 costimulation. J Immunol 175: 2825–2833.
[26]  Rajasekaran K, Xiong V, Fong L, Gorski J, Malarkannan S (2010) Functional dichotomy between NKG2D and CD28-mediated co-stimulation in human CD8+ T cells. PLoS One 5.
[27]  Groh V, Rhinehart R, Randolph-Habecker J, Topp MS, Riddell SR, et al. (2001) Costimulation of CD8alphabeta T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol 2: 255–260.
[28]  Diefenbach A, Tomasello E, Lucas M, Jamieson AM, Hsia JK, et al. (2002) Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D. Nat Immunol 3: 1142–1149.
[29]  Ehrlich LI, Ogasawara K, Hamerman JA, Takaki R, Zingoni A, et al. (2005) Engagement of NKG2D by cognate ligand or antibody alone is insufficient to mediate costimulation of human and mouse CD8+ T cells. J Immunol 174: 1922–1931.
[30]  Rausch A, Hessmann M, Holscher A, Schreiber T, Bulfone-Paus S, et al. (2006) Interleukin-15 mediates protection against experimental tuberculosis: a role for NKG2D-dependent effector mechanisms of CD8+ T cells. Eur J Immunol 36: 1156–1167.
[31]  Cliff JM, Andrade IN, Mistry R, Clayton CL, Lennon MG, et al. (2004) Differential gene expression identifies novel markers of CD4+ and CD8+ T cell activation following stimulation by Mycobacterium tuberculosis. J Immunol 173: 485–493.
[32]  Burton MJ, Bailey RL, Jeffries D, Mabey DC, Holland MJ (2004) Cytokine and fibrogenic gene expression in the conjunctivas of subjects from a Gambian community where trachoma is endemic. Infect Immun 72: 7352–7356.
[33]  Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, S M, editors. Bioinformatics Methods and Protocols: Methods in Molecular Biology. Totowa, NJ: Humana Press,. 365–386.
[34]  Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410.
[35]  Roberts AI, Lee L, Schwarz E, Groh V, Spies T, et al. (2001) NKG2D receptors induced by IL-15 costimulate CD28-negative effector CTL in the tissue microenvironment. J Immunol 167: 5527–5530.
[36]  Maasho K, Opoku-Anane J, Marusina AI, Coligan JE, Borrego F (2005) NKG2D is a costimulatory receptor for human naive CD8+ T cells. J Immunol 174: 4480–4484.
[37]  Park YP, Choi SC, Kiesler P, Gil-Krzewska A, Borrego F, et al. (2011) Complex regulation of human NKG2D-DAP10 cell surface expression: opposing roles of the gammac cytokines and TGF-beta1. Blood 118: 3019–3027.
[38]  Caccamo N, Guggino G, Meraviglia S, Gelsomino G, Di Carlo P, et al. (2009) Analysis of Mycobacterium tuberculosis-specific CD8 T-cells in patients with active tuberculosis and in individuals with latent infection. PLoS One 4: e5528.
[39]  Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, et al. (2010) An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466: 973–977.
[40]  Cliff JM, Lee JS, Constantinou N, Cho JE, Clark TG, et al. (2013) Distinct phases of blood gene expression pattern through tuberculosis treatment reflect modulation of the humoral immune response. J Infect Dis 207: 18–29.
[41]  Parasa VR, Sikhamani R, Raja A (2012) Effect of recombinant cytokines on the expression of natural killer cell receptors from patients with TB or/and HIV infection. PLoS One 7: e37448.
[42]  Hessmann M, Rausch A, Ruckerl D, Adams PS, Simon M, et al.. (2010) DAP10 contributes to CD8(+) T cell-mediated cytotoxic effector mechanisms during Mycobacterium tuberculosis infection. Immunobiology.
[43]  Hirsch CS, Hussain R, Toossi Z, Dawood G, Shahid F, et al. (1996) Cross-modulation by transforming growth factor beta in human tuberculosis: suppression of antigen-driven blastogenesis and interferon gamma production. Proc Natl Acad Sci U S A 93: 3193–3198.
[44]  Olobo JO, Geletu M, Demissie A, Eguale T, Hiwot K, et al. (2001) Circulating TNF-alpha, TGF-beta, and IL-10 in tuberculosis patients and healthy contacts. Scand J Immunol 53: 85–91.
[45]  Eisele G, Wischhusen J, Mittelbronn M, Meyermann R, Waldhauer I, et al. (2006) TGF-beta and metalloproteinases differentially suppress NKG2D ligand surface expression on malignant glioma cells. Brain 129: 2416–2425.
[46]  Friese MA, Wischhusen J, Wick W, Weiler M, Eisele G, et al. (2004) RNA interference targeting transforming growth factor-beta enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res 64: 7596–7603.
[47]  Kloss M, Decker P, Baltz KM, Baessler T, Jung G, et al. (2008) Interaction of monocytes with NK cells upon Toll-like receptor-induced expression of the NKG2D ligand MICA. J Immunol 181: 6711–6719.
[48]  Vankayalapati R, Garg A, Porgador A, Griffith DE, Klucar P, et al. (2005) Role of NK cell-activating receptors and their ligands in the lysis of mononuclear phagocytes infected with an intracellular bacterium. J Immunol 175: 4611–4617.
[49]  Chalupny NJ, Rein-Weston A, Dosch S, Cosman D (2006) Down-regulation of the NKG2D ligand MICA by the human cytomegalovirus glycoprotein UL142. Biochem Biophys Res Commun 346: 175–181.
[50]  Cerboni C, Ardolino M, Santoni A, Zingoni A (2009) Detuning CD8+ T lymphocytes by down-regulation of the activating receptor NKG2D: role of NKG2D ligands released by activated T cells. Blood 113: 2955–2964.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133