[1] | Shen MR, Hsu YM, Hsu KF, Chen YF, Tang MJ, et al. (2006) Insulin-like growth factor 1 is a potent stimulator of cervical cancer cell invasiveness and proliferation that is modulated by alphavbeta3 integrin signaling. Carcinogenesis 27: 962–971.
|
[2] | Hu X, Schwarz JK, Lewis JS Jr, Huettner PC, Rader JS, et al. (2010) A microRNA expression signature for cervical cancer prognosis. Cancer Res 70: 1441–1448.
|
[3] | Roa JC, Garcia P, Gomez J, Fernandez W, Gaete F, et al. (2009) HPV genotyping from invasive cervical cancer in Chile. Int J Gynaecol Obstet 105: 150–153.
|
[4] | Lee D, Kwon JH, Kim EH, Kim ES, Choi KY (2010) HMGB2 stabilizes p53 by interfering with E6/E6AP-mediated p53 degradation in human papillomavirus-positive HeLa cells. Cancer Lett 292: 125–132.
|
[5] | Huh K, Zhou X, Hayakawa H, Cho J-Y, Libermann TA, et al. (2007) Human papillomavirus type 16 E7 oncoprotein associates with the cullin 2 ubiquitin ligase complex, which contributes to degradation of the retinoblastoma tumor suppressor. J Virol 81: 9737–9747.
|
[6] | Cornelio DB, Roesler R, Schwartsmann G (2009) Emerging Therapeutic Agents for Cervical Cancer. Recent Patents on Anti-Cancer Drug Discovery 4: 196–206.
|
[7] | Chan A, Tan HL, Ching TH, Tan HC (2012) Clinical outcomes for cancer patients using complementary and alternative medicine. Altern Ther Health Med. 18: 12–7.
|
[8] | Helyer LK, Chin S, Chui BK, Fitzgerald B, Verma S, et al. (2006) The use of complementary and alternative medicines among patients with locally advanced breast cancer -a descriptive study. BMC Cancer 6: 39.
|
[9] | Aruoma OI, Sun B, Fujii H, Neergheen VS, Bahorun T, et al. (2006) Low molecular proanthocyanidin dietary biofactor Oligonol: Its modulation of oxidative stress, bioefficacy, neuroprotection, food application and chemoprevention potentials. Biofactors 27: 245–265.
|
[10] | Cragg GM, Newman DJ (2005) Plants as a source of anti-cancer agents. J Ethnopharmacol 100: 72–79.
|
[11] | Pandey G, Madhuri S (2009) Some medicinal plants as natural anticancer agents. Pharmacogn Rev 3: 259–63.
|
[12] | Koppikar SJ, Choudhari AS, Suryavanshi SA, Kumari S, Chattopadhyay S, et al. (2010) Aqueous cinnamon extract (ACE-c) from the bark of Cinnamomum cassia causes apoptosis in human cervical cancer cell line (SiHa) through loss of mitochondrial membrane potential. BMC Cancer 10: 210.
|
[13] | Aiyegoro OA, Okoh AI (2009) Use of bioactive plant products in combination with standard antibiotics, implications in antimicrobial chemotherapy. J Med Plants 3: 1147–1152.
|
[14] | Haneef J, Parvathy M, Thankayyan RSK, Sithul H, Sreeharshan S (2012) Bax Translocation Mediated Mitochondrial Apoptosis and Caspase Dependent Photosensitizing Effect of Ficus religiosa on Cancer Cells. PLoS ONE 7.
|
[15] | Choudhary GP (2006) Evaluation of ethanolic extract of Ficus religiosa bark on incision and excision wounds in rats. Planta Indica 2: 17–19.
|
[16] | Nair R, Chanda SV (2007) Antibacterial activities of some medicinal plants of the Western Region of India. Turkish Journal of Biology 31: 231–236.
|
[17] | Damanpreet S, Rajesh KG (2009) Anticonvulsant effect of Ficus religiosa: role of serotonergic pathways. J Ethnopharmacol 123: 330–334.
|
[18] | Pandit R, Phadke A, Jagtap A (2010) Antidiabetic effect of Ficus religiosa extract in streptozotocin-induced diabetic rats. J Ethnopharmacol 128: 462–466.
|
[19] | Kirana H, Agrawal S, Srinivasan BP (2009) Aqueous extract of Ficus religiosa Linn.reduces oxidative stress in experimentally induced type 2 diabetic rats. Indian Journal of Experimental Biology 47: 822–826.
|
[20] | Sreelekshmi R, Latha PG, Arafat MM, Shyamal S, Shine VJ, et al. (2007) Anti-inflammatory, analgesic and anti-lipid peroxidation studies on stem bark of Ficus religiosa Linn. Natural Product Radiance 6: 377–381.
|
[21] | Vinutha B, Prashanth D, Salma K, Sreeja SL, Pratiti D (2007) Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity. J Ethnopharmacol 109: 359–363.
|
[22] | Ratnasooriya WD, Jayakody JRAC, Dharmasiri MG (1998) An aqueous extract of trunk bark of Ficus religiosa has anxiolytic activity. Medical Science Research 26: 817–819.
|
[23] | Choudhari AS, Suryavanshi SA, Ingle H, Kaul-Ghanekar R (2011) Evaluating the antioxidant potential of aqueous and alcoholic extracts of Ficus religiosa using ORAC assay and assessing their cytotoxic activity in cervical cancer cell lines. Biotechnol. Bioinf. Bioeng 1: 443–450.
|
[24] | Ayurvedic Pharmacopoeia of India (2001) Vol 1.
|
[25] | Khandelwal KR (2005) Practical Pharmacognosy. Nirali Prakashan 149–160.
|
[26] | Kaul R, Mukherjee S, Ahmed F, Bhat MK, Chhipa R, et al. (2003) Direct interaction with and activation of p53 by SMAR1 retards cell-cycle progression at G2/M phase and delays tumor growth in mice. Int J Cancer 103: 606–615.
|
[27] | Nambotin SB, Tomimaru Y, Merle P, Wands JR, Kim M (2012) Functional consequences of WNT3/Frizzled7-mediated signaling in non-transformed hepatic cells. Oncogenesis 1.
|
[28] | Kim H, Choi J-A, Park G-S, Kim J-H (2012) BLT2 Up-Regulates Interleukin-8 Production and Promotes the Invasiveness of Breast Cancer Cells. PLoS ONE 7(11): e49186.
|
[29] | Sánchez-Alcázar JA, Schneider E, Martínez MA, Carmona P, Hernández-Mu?oz I, et al. (2000) Tumor necrosis factor-alpha increases the steady-state reduction of cytochrome b of the mitochondrial respiratory chain in metabolically inhibited L929 cells. J Biol Chem 275: 13353–13361.
|
[30] | Giacinti C, Giordano A (2006) RB and cell cycle progression. Oncogene 25: 5220–5227.
|
[31] | Deryugina EI, Quigley JP (2006) Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 25: 9–34.
|
[32] | Yu D, Wang SS, Dulski KM, Tsai CM, Nicolson GL, et al. (1994) C-erbB-2/neu overexpression enhances metastatic potential of human lung cancer cells by induction of metastasis-associated properties. Cancer Res 54: 3260–3266.
|
[33] | Pellikainen JM, Ropponen KM, Kataja VV, Kellokoski JK, Eskelinen MJ, et al. (2004) Expression of matrix metalloproteinase (MMP)-2 and MMP-9 in breast cancer with a special reference to activator protein-2, HER2, and prognosis. Clin Cancer Res 10: 7621–7628.
|
[34] | Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127: 2893–2917.
|
[35] | Zur hausen H (2002) Papillomavirus and cancer: from basic studies to clinical application. Nature Reviews Cancer 2: 342–350.
|
[36] | Singh D, Singh B, Goel RK (2011) Traditional uses, phytochemistry and pharmacology of Ficus religiosa: A review, J Ethnopharmacol. 134: 565–583.
|
[37] | Rivlin N, Brosh R, Oren M, Rotter V (2011) Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes Cancer 2: 466–474.
|
[38] | Muller PA, Vousden KH, Norman JC (2011) p53 and its mutants in tumor cell migration and invasion. J Cell Biol 192: 209–218.
|
[39] | Scheffner M, Munger K, Byrne JC, Howley PM (1991) The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. Proc Natl Acad Sci U S A 88: 5523–5527.
|
[40] | Kochetkov DV, Il’inskaia GV, Komarov PG, Strom E, Agapova LS, et al. (2007) Transcriptional inhibition of human papilloma virus in cervical carcinoma cells reactivates functions of the tumor suppressor p53. Mol Biol (Mosk) 41: 515–23.
|
[41] | Sa G, Das T (2008) Anti cancer effects of curcumin: cycle of life and death. Cell Division 3: 14.
|
[42] | Niculescu AB 3rd, Chen X, Smeets M, Hengst L, Prives C, et al (1998) Effects of p21(Cip1/Waf1) at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol Cell Biol 18: 629–643.
|
[43] | Henley SA, Dick FA (2012) The retinoblastoma family of proteins and their regulatory functions in the mammalian cell division cycle. Cell Division 7: 10.
|
[44] | Jones DL, Münger K (1997) Analysis of the p53-mediated G1 growth arrest pathway in cells expressing the human papillomavirus type 16 E7 oncoprotein. J Virol 71: 2905–2912.
|
[45] | Korbakis D, Scorilas A (2012) Quantitative expression analysis of the apoptosis-related genes BCL2, BAX and BCL2L12 in gastric adenocarcinoma cells following treatment with the anticancer drugs cisplatin, etoposide and taxol. Tumour Biol 33: 865–75.
|
[46] | Fulda S, Galluzzi L, Kroemer G (2010) Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 9: 447–464.
|
[47] | Elmore S (2007) Apoptosis: A review of programmed cell death. Toxicologic pathology 35(4): 495–516.
|
[48] | Duchen MR (2000) Mitochondria and calcium: from cell signalling to cell death J. Physiol. 529: 57–68.
|
[49] | Giorgi C, Agnoletto C, Bononi A, Bonora M, De Marchi E, et al. (2012) Mitochondrial calcium homeostasis as potential target for mitochondrial medicine. Mitochondrion 12: 77–85.
|
[50] | Vousden KH (2000) p53: death star. Cell 103: 691–694.
|
[51] | Zhang XP, Liu F, Wang W (2011) Two-phase dynamics of p53 in the DNA damage response. Proc Natl Acad Sci USA 108: 8990–5.
|
[52] | Meissner JD (1999) Nucleotide sequences and further characterization of human papillomavirus DNA present in the CaSki, SiHa and HeLa cervical carcinoma cell lines. J Gen Virol 80: 1725–1733.
|
[53] | Bravo-Cuellar A, Ortiz-Lazareno PC, Lerma-Diaz JM, Dominguez-Rodriguez JR, Jave-Suarez LF, et al. (2010) Sensitization of cervix cancer cells to Adriamycin by Pentoxifylline induces an increase in apoptosis and decrease senescence. Mol Cancer 9: 114.
|
[54] | Mitra AB, Murty VV, Pratap M, Sodhani P, Chaganti RS (1994) ErbB2 (HER2/neu) Oncogene is frequently amplified in squamous cell carcinoma of the uterine cervix. Cancer Res 54: 637–639.
|
[55] | Chavez-Blanco A, Perez-Sanchez V, Gonzalez-Fierro A, Vela-Chavez T, Candelaria M, et al. (2004) HER2 expression in cervical cancer as a potential therapeutic target. BMC Cancer 4: 1–6.
|
[56] | Abdulkarim B, Sabri S, Deutsch E, Chagraoui H, Maggiorella L, et al. (2002) Antiviral agent Cidofovir restores p53 function and enhances the radiosensitivity in HPV-associated cancers. Oncogene 21: 2334–2346.
|
[57] | Moustafa A-EA, Foulkes WD, Benlimame N, Wong A, Yen L, et al. (2004) E6/E7 proteins of HPV type 16 and ErbB-2 cooperate to induce neoplastic transformation of primary normal oral epithelial cells. Oncogene 23: 350–358.
|
[58] | Woods Ignatoski KM, Dziubinski ML, Ammerman C, Ethier SP (2005) Cooperative interactions of HER-2 and HPV-16 oncoproteins in the malignant transformation of human mammary epithelial cells. Neoplasia 7: 788–798.
|
[59] | Aggarwal BB, Prasad S, Reuter S, Kannappan R, Yadev VR, et al. (2011) Identification of Novel Anti-inflammatory Agents from Ayurvedic Medicine for Prevention of Chronic Diseases, “Reverse Pharmacology and “Bedside to Bench” Approach. Curr Drug Target. 12: 1595–1653.
|
[60] | D’Archivio M, Santangelo C, Scazzocchio B, Rosaria V, Filesi C, et al. (2008) Modulatory Effects of Polyphenols on Apoptosis Induction: Relevance for Cancer Prevention. Int J Mol Sci 9: 213–228.
|