全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Ursolic Acid Inhibits Adipogenesis in 3T3-L1 Adipocytes through LKB1/AMPK Pathway

DOI: 10.1371/journal.pone.0070135

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Ursolic acid (UA) is a triterpenoid compound with multiple biological functions. This compound has recently been reported to possess an anti-obesity effect; however, the mechanisms are less understood. Objective As adipogenesis plays a critical role in obesity, the present study was conducted to investigate the effect of UA on adipogenesis and mechanisms of action in 3T3-L1 preadipocytes. Methods and Results The 3T3-L1 preadipocytes were induced to differentiate in the presence or absence of UA for 6 days. The cells were determined for proliferation, differentiation, fat accumulation as well as the protein expressions of molecular targets that regulate or are involved in fatty acid synthesis and oxidation. The results demonstrated that ursolic acid at concentrations ranging from 2.5 μM to 10 μM dose-dependently attenuated adipogenesis, accompanied by reduced protein expression of CCAAT element binding protein β (C/EBPβ), peroxisome proliferator-activated receptor γ (PPARγ), CCAAT element binding protein α (C/EBPα) and sterol regulatory element binding protein 1c (SREBP-1c), respectively. Ursolic acid increased the phosphorylation of acetyl-CoA carboxylase (ACC) and protein expression of carnitine palmitoyltransferase 1 (CPT1), but decreased protein expression of fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Ursolic acid increased the phosphorylation of AMP-activated protein kinase (AMPK) and protein expression of (silent mating type information regulation 2, homolog) 1 (Sirt1). Further studies demonstrated that the anti-adipogenic effect of UA was reversed by the AMPK siRNA, but not by the Sirt1 inhibitor nicotinamide. Liver kinase B1 (LKB1), the upstream kinase of AMPK, was upregulated by UA. When LKB1 was silenced with siRNA or the inhibitor radicicol, the effect of UA on AMPK activation was diminished. Conclusions Ursolic acid inhibited 3T3-L1 preadipocyte differentiation and adipogenesis through the LKB1/AMPK pathway. There is potential to develop UA into a therapeutic agent for the prevention or treatment of obesity.

References

[1]  Despres JP, Lemieux I (2006) Abdominal obesity and metabolic syndrome. Nature 444: 881–887.
[2]  Kopelman PG (2000) Obesity as a medical problem. Nature 404: 635–643.
[3]  Zieba R (2007) [Obesity: a review of currently used antiobesity drugs and new compounds in clinical development]. Postepy Hig Med Dosw (Online) 61: 612–626.
[4]  Halford JC (2006) Obesity drugs in clinical development. Curr Opin Investig Drugs 7: 312–318.
[5]  Elangbam CS (2009) Review paper: Current strategies in the development of anti-obesity drugs and their safety concerns. Vet Pathol 46: 10–24.
[6]  Rodgers RJ, Tschop MH, Wilding JP (2012) Anti-obesity drugs: past, present and future. Dis Model Mech 5: 621–626.
[7]  Kim S, Jin Y, Choi Y, Park T (2011) Resveratrol exerts anti-obesity effects via mechanisms involving down-regulation of adipogenic and inflammatory processes in mice. Biochem Pharmacol 81: 1343–1351.
[8]  Ahn J, Lee H, Kim S, Park J, Ha T (2008) The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways. Biochem Biophys Res Commun 373: 545–549.
[9]  Klaus S, Pultz S, Thone-Reineke C, Wolfram S (2005) Epigallocatechin gallate attenuates diet-induced obesity in mice by decreasing energy absorption and increasing fat oxidation. Int J Obes (Lond) 29: 615–623.
[10]  Checker R, Sandur SK, Sharma D, Patwardhan RS, Jayakumar S, et al. (2012) Potent anti-inflammatory activity of ursolic acid, a triterpenoid antioxidant, is mediated through suppression of NF-kappaB, AP-1 and NF-AT. PLoS One 7: e31318.
[11]  Heo HJ, Cho HY, Hong B, Kim HK, Heo TR, et al. (2002) Ursolic acid of Origanum majorana L. reduces Abeta-induced oxidative injury. Mol Cells 13: 5–11.
[12]  Guevara AP, Amor E, Russell G (1996) Antimutagens from Plumeria acuminata Ait. Mutat Res 361: 67–72.
[13]  Konoshima T, Takasaki M, Kozuka M, Tokuda H (1987) Studies on inhibitors of skin-tumor promotion, I. Inhibitory effects of triterpenes from Euptelea polyandra on Epstein-Barr virus activation. J Nat Prod 50: 1167–1170.
[14]  Liu J, Liu Y, Mao Q, Klaassen CD (1994) The effects of 10 triterpenoid compounds on experimental liver injury in mice. Fundam Appl Toxicol 22: 34–40.
[15]  Poehland BL, Carte BK, Francis TA, Hyland LJ, Allaudeen HS, et al. (1987) In vitro antiviral activity of dammar resin triterpenoids. J Nat Prod 50: 706–713.
[16]  Ullevig SL, Zhao Q, Zamora D, Asmis R (2011) Ursolic acid protects diabetic mice against monocyte dysfunction and accelerated atherosclerosis. Atherosclerosis 219: 409–416.
[17]  Jayaprakasam B, Olson LK, Schutzki RE, Tai MH, Nair MG (2006) Amelioration of obesity and glucose intolerance in high-fat-fed C57BL/6 mice by anthocyanins and ursolic acid in Cornelian cherry (Cornus mas). J Agric Food Chem 54: 243–248.
[18]  Rao VS, de Melo CL, Queiroz MG, Lemos TL, Menezes DB, et al. (2011) Ursolic acid, a pentacyclic triterpene from Sambucus australis, prevents abdominal adiposity in mice fed a high-fat diet. J Med Food 14: 1375–1382.
[19]  Kim J, Jang DS, Kim H, Kim JS (2009) Anti-lipase and lipolytic activities of ursolic acid isolated from the roots of Actinidia arguta. Arch Pharm Res 32: 983–987.
[20]  Li Y, Kang Z, Li S, Kong T, Liu X, et al. (2010) Ursolic acid stimulates lipolysis in primary-cultured rat adipocytes. Mol Nutr Food Res 54: 1609–1617.
[21]  Zhang W, Hong D, Zhou Y, Zhang Y, Shen Q, et al. (2006) Ursolic acid and its derivative inhibit protein tyrosine phosphatase 1B, enhancing insulin receptor phosphorylation and stimulating glucose uptake. Biochim Biophys Acta 1760: 1505–1512.
[22]  Hardie DG (2004) The AMP-activated protein kinase pathway—new players upstream and downstream. J Cell Sci 117: 5479–5487.
[23]  Chen S, Li Z, Li W, Shan Z, Zhu W (2011) Resveratrol inhibits cell differentiation in 3T3-L1 adipocytes via activation of AMPK. Can J Physiol Pharmacol 89: 793–799.
[24]  Lee YK, Lee WS, Hwang JT, Kwon DY, Surh YJ, et al. (2009) Curcumin exerts antidifferentiation effect through AMPKalpha-PPAR-gamma in 3T3-L1 adipocytes and antiproliferatory effect through AMPKalpha-COX-2 in cancer cells. J Agric Food Chem 57: 305–310.
[25]  Kwon HS, Ott M (2008) The ups and downs of SIRT1. Trends Biochem Sci 33: 517–525.
[26]  Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, et al. (2004) Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429: 771–776.
[27]  Fischer-Posovszky P, Kukulus V, Tews D, Unterkircher T, Debatin KM, et al. (2010) Resveratrol regulates human adipocyte number and function in a Sirt1-dependent manner. Am J Clin Nutr 92: 5–15.
[28]  Sultana N (2011) Clinically useful anticancer, antitumor, and antiwrinkle agent, ursolic acid and related derivatives as medicinally important natural product. J Enzyme Inhib Med Chem 26: 616–642.
[29]  Ntambi JM, Young-Cheul K (2000) Adipocyte differentiation and gene expression. J Nutr 130: 3122S–3126S.
[30]  White UA, Stephens JM (2010) Transcriptional factors that promote formation of white adipose tissue. Mol Cell Endocrinol 318: 10–14.
[31]  Chawla A, Schwarz EJ, Dimaculangan DD, Lazar MA (1994) Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology 135: 798–800.
[32]  Darlington GJ, Ross SE, MacDougald OA (1998) The role of C/EBP genes in adipocyte differentiation. J Biol Chem 273: 30057–30060.
[33]  Cao Z, Umek RM, McKnight SL (1991) Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev 5: 1538–1552.
[34]  Eberle D, Hegarty B, Bossard P, Ferre P, Foufelle F (2004) SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 86: 839–848.
[35]  Kim JB, Spiegelman BM (1996) ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev 10: 1096–1107.
[36]  Farmer SR (2006) Transcriptional control of adipocyte formation. Cell Metab 4: 263–273.
[37]  Hertzel AV, Bernlohr DA (2000) The mammalian fatty acid-binding protein multigene family: molecular and genetic insights into function. Trends Endocrinol Metab 11: 175–180.
[38]  Paulauskis JD, Sul HS (1988) Cloning and expression of mouse fatty acid synthase and other specific mRNAs. Developmental and hormonal regulation in 3T3-L1 cells. J Biol Chem 263: 7049–7054.
[39]  Waite M, Wakil SJ (1963) Studies on the mechanism of action of acetyl coenzyme A carboxylase. I. Effect of isocitrate on the transcarboxylation step of acetyl coenzyme A carboxylase. J Biol Chem 238: 77–80.
[40]  Habinowski SA, Witters LA (2001) The effects of AICAR on adipocyte differentiation of 3T3-L1 cells. Biochem Biophys Res Commun 286: 852–856.
[41]  Ono M, Fujimori K (2011) Antiadipogenic effect of dietary apigenin through activation of AMPK in 3T3-L1 cells. J Agric Food Chem 59: 13346–13352.
[42]  Kim SK, Kong CS (2010) Anti-adipogenic effect of dioxinodehydroeckol via AMPK activation in 3T3-L1 adipocytes. Chem Biol Interact 186: 24–29.
[43]  Kong CS, Kim JA, Bak SS, Byun HG, Kim SK (2011) Anti-obesity effect of carboxymethyl chitin by AMPK and aquaporin-7 pathways in 3T3-L1 adipocytes. J Nutr Biochem 22: 276–281.
[44]  Hwang JT, Lee MS, Kim HJ, Sung MJ, Kim HY, et al. (2009) Antiobesity effect of ginsenoside Rg3 involves the AMPK and PPAR-gamma signal pathways. Phytother Res 23: 262–266.
[45]  Hwang JT, Park IJ, Shin JI, Lee YK, Lee SK, et al. (2005) Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase. Biochem Biophys Res Commun 338: 694–699.
[46]  Backesjo CM, Li Y, Lindgren U, Haldosen LA (2009) Activation of Sirt1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells. Cells Tissues Organs 189: 93–97.
[47]  Carling D, Sanders MJ, Woods A (2008) The regulation of AMP-activated protein kinase by upstream kinases. Int J Obes (Lond) 32 Suppl 4: S55–59.
[48]  Daval M, Foufelle F, Ferre P (2006) Functions of AMP-activated protein kinase in adipose tissue. J Physiol 574: 55–62.
[49]  Sarjeant K, Stephens JM (2012) Adipogenesis. Cold Spring Harb Perspect Biol 4: a008417.
[50]  Xie M, Zhang D, Dyck JR, Li Y, Zhang H, et al. (2006) A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proc Natl Acad Sci U S A 103: 17378–17383.
[51]  Costanzo-Garvey DL, Pfluger PT, Dougherty MK, Stock JL, Boehm M, et al. (2009) KSR2 is an essential regulator of AMP kinase, energy expenditure, and insulin sensitivity. Cell Metab 10: 366–378.
[52]  Revelli JP, Smith D, Allen J, Jeter-Jones S, Shadoan MK, et al. (2011) Profound obesity secondary to hyperphagia in mice lacking kinase suppressor of ras 2. Obesity (Silver Spring) 19: 1010–1018.
[53]  Sun Z, Gong J, Wu H, Xu W, Wu L, et al. (2013) Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes. Nat Commun 4: 1594.
[54]  He Y, Li Y, Zhang S, Perry B, Zhao T, et al. (2013) Radicicol, a heat shock protein 90 inhibitor, inhibits differentiation and adipogenesis in 3T3-L1 preadipocytes. Biochemical and Biophysical Research Communications doi: http://dx.doi.org/10.1016/j.bbrc.2013.05?.068.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133