全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Impact of Nanograting Phase-Shift on Light Absorption Enhancement in Plasmonics-Based Metal-Semiconductor-Metal Photodetectors

DOI: 10.1155/2011/504530

Full-Text   Cite this paper   Add to My Lib

Abstract:

The finite difference time-domain (FDTD) method is used to simulate the light absorption enhancement in a plasmonic metal-semiconductor-metal photodetector (MSM-PD) structure employing a metal nanograting with phase shifts. The metal fingers of the MSM-PDs are etched at appropriate depths to maximize light absorption through plasmonic effects into a subwavelength aperture. We also analyse the nano-grating phase shift and groove profiles obtained typically in our experiments using focused ion beam milling and atomic force microscopy and discuss the dependency of light absorption enhancement on the nano-gratings phase shift and groove profiles inscribed into MSM-PDs. Our simulation results show that the nano-grating phase shift blue-shifts the wavelength at which the light absorption enhancement is maximum, and that the combined effects of the nano-grating groove shape and phase shift degrade the light absorption enhancement by up to 50%. 1. Introduction In recent years, sub-wavelength nanostructured metal nanogratings have been identified as promising candidates for realising high-speed improved sensitivity metal-semiconductor-metal photodetectors (MSM-PDs) [1]. The strong interaction of a nanostructured metal grating with an incident light enables trapping the light through the metal finger slit into the semiconductor substrate, leading to substantial improvement in light absorption, and opening the way for a wide range of potential applications, such as optical fiber communications, high-speed chip-to-chip interconnects, and high-speed sampling [2, 3]. An MSM-PD is simply composed of two back-to-back Schottky diodes and has interdigitated metal fingers deposited onto a semiconductor substrate as an active light absorption layer. Upon detection of photons, it collects the electric currents generated by photo-excited charge carriers in the semiconductor region, which drift under the electric field applied between the metal fingers. The speed of MSM-PDs can be limited intrinsically by the carrier transit time between the electrodes. The interdigitated electrodes in MSM-PDs result in a huge increase in bandwidth and reduction in dark current, in comparison to conventional PIN photodiodes with active areas of similar size [2–4]. Recently, the use of surface plasmon-assisted effects has been reported for the development of MSM-PDs with a high-responsivity bandwidth product [5, 6]. Several theoretical and experimental results have been reported on the extraordinary optical transmission through the sub-wavelength metallic apertures, and metal gratings [7–20].

References

[1]  J. A. Shackleford, R. Grote, M. Currie, J. E. Spanier, and B. Nabet, “Integrated plasmonic lens photodetector,” Applied Physics Letters, vol. 94, no. 8, Article ID 083501, 2009.
[2]  J. B. D. Soole and H. Schumacher, “InGaAs metal-semiconductor-metal photodetectors for long wavelength optical communications,” IEEE Journal of Quantum Electronics, vol. 27, no. 3, pp. 737–752, 1991.
[3]  M. Ito and O. Wada, “Low dark current GaAs metal-semiconductor-metal (MSM) photodiodes using WSix contacts,” IEEE Journal of Quantum Electronics, vol. 22, no. 7, pp. 1073–1077, 1986.
[4]  L.-H. Laih, T.-C. Chang, Y.-A. Chen, W.-C. Tsay, and J.-W. Hong, “Characteristics of MSM photodetectors with trench electrodes on P-type Si wafer,” IEEE Transactions on Electron Devices, vol. 45, no. 9, pp. 2018–2023, 1998.
[5]  J. Hetterich, G. Bastian, N. A. Gippius, S. G. Tikhodeev, G. von Plessen, and U. Lemmer, “Optimized design of plasmonic MSM photodetector,” IEEE Journal of Quantum Electronics, vol. 43, no. 10, pp. 855–859, 2007.
[6]  S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Efficient light absorption in metal-semiconductor-metal nanostructures,” Applied Physics Letters, vol. 85, no. 2, pp. 194–196, 2004.
[7]  R. D. R. Bhat, N. C. Panoiu, R. M. Osgood Jr., and S. R. J. Brueck, “Enhancing infrared photodetection with a circular metal grating,” in Conference on Lasers and Electro-Optics (CLEO '07), Baltimore, Md, USA, May 2007.
[8]  H. Raether, Surface Plasmons on Smooth, Rough Surfaces, and Gratings, Springer, Berlin, Germany, 1988.
[9]  S. A. Maier, Plasmonics: Fundamentals and Applications, Springer Science, New York, NY, USA, 2007.
[10]  C. L. Tan, V. V. Lysak, K. Alameh, and Y. T. Lee, “Absorption enhancement of 980 nm MSM photodetector with a plasmonic grating structure,” Optics Communications, vol. 283, no. 9, pp. 1763–1767, 2010.
[11]  N. Das, A. Karar, M. Vasiliev, C. L. Tan, K. Alameh, and Y. T. Lee, “Analysis of nano-grating-assisted light absorption enhancement in metal-semiconductor-metal photodetectors patterned using focused ion-beam lithography,” Optics Communications, vol. 284, no. 6, pp. 1694–1700, 2011.
[12]  F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Physical Review B, vol. 66, no. 15, Article ID 155412, 2002.
[13]  G. Lévêque, O. J. F. Martin, and J. Weiner, “Transient behavior of surface plasmon polaritons scattered at a subwavelength groove,” Physical Review B, vol. 76, no. 15, Article ID 155418, 2007.
[14]  B. Sturman, E. Podivilov, and M. Gorkunov, “Theory of extraordinary light transmission through arrays of subwavelength slits,” Physical Review B, vol. 77, no. 7, Article ID 075106, 2008.
[15]  T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, vol. 391, no. 6668, pp. 667–669, 1998.
[16]  L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec et al., “Theory of extraordinary optical transmission through subwavelength hole arrays,” Physical Review Letters, vol. 86, no. 6, pp. 1114–1117, 2001.
[17]  F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Physical Review Letters, vol. 90, no. 21, Article ID 213901, 2003.
[18]  L. Martín-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Physical Review Letters, vol. 90, no. 16, Article ID 167401, 4 pages, 2003.
[19]  H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Optics Express, vol. 12, no. 16, pp. 3629–3651, 2004.
[20]  J. S. White, G. Veronis, Z. Yu et al., “Extraordinary optical absorption through subwavelength slits,” Optics Letters, vol. 34, no. 5, pp. 686–688, 2009.
[21]  A. D. Raki?, A. B. Djuri?i?, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Applied Optics, vol. 37, no. 22, pp. 5271–5283, 1998.
[22]  E. D. Palik, “Galllium Arsenide (GaAs),” in Handbook of Optical Constants of Solids, E. D. Palik, Ed., Academic Press, San Diego, Calif, USA, 1985.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133