全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Light-Driven Droplet Manipulation Technologies for Lab-on-a-Chip Applications

DOI: 10.1155/2011/909174

Full-Text   Cite this paper   Add to My Lib

Abstract:

Droplet-based (digital) microfluidics has been demonstrated in many lab-on-a-chip applications due to its free cross-contamination and no dispersion nature. Droplet manipulation mechanisms are versatile, and each has unique advantages and limitations. Recently, the idea of manipulating droplets with light beams either through optical forces or light-induced physical mechanisms has attracted some interests, since light can achieve 3D addressing, carry high energy density for high speed actuation, and be patterned and dynamically reconfigured to generate a large number of light beams for massively parallel manipulation. This paper reviews recent developments of various optical technologies for droplet manipulation and their applications in lab-on-a-chip. 1. Introduction Microfluidic devices promise a broad range of biomedical and chemical applications due to their potentials of small volume requirement, short analysis and diagnostic time, high sensitivity, and high throughput analysis [1–3]. Recently, particular attention has been paid to droplet-based (digital) microfluidic devices since droplets isolated in immiscible oil or air can be free from cross-contamination and dispersion [4]. Numerous droplet-based applications including protein crystallization [5, 6], polymerase chain reaction (PCR) [7, 8], enzyme kinetic assays [3, 9], and synthesis of organic molecules or nanoparticles [10, 11] have been demonstrated. Droplet manipulation mechanisms that have been investigated cover a broad range of physical principles, including electrowetting on dielectric (EWOD) [12, 13], dielectrophoresis (DEP) [14, 15], thermocapillary force [16, 17], surface acoustic wave [18], magnetic force [19, 20], and optical forces [21]. In recent years, many light-driven droplet actuation mechanisms have been demonstrated, aiming to provide more functionalities, flexibility, lower cost, and higher throughput droplet manipulation tools or platforms [22, 23]. In general, optical-based droplet manipulation technologies can provide several unique advantages. First, light can be patterned and reconfigured to provide dynamic images, which in turn provides dynamic control of the triggered physical mechanisms without using complex control circuitry on chip. Millions of optical pixels can be readily generated by commercial spatial light modulators such as a LCD or DMD display to provide control of millions of electrodes in parallel on a low-cost and disposable device. Second, some optical methods can provide 3D manipulation of droplets since light can be propagated and focused in free

References

[1]  H. Wang, K. Liu, K. J. Chen, et al., “A rapid pathway toward a superb gene delivery system: programming structural and functional diversity into a supramolecular nanoparticle library,” ACS Nano, vol. 4, no. 10, pp. 6235–6243, 2010.
[2]  C. C. Lee, G. Sui, A. Elizarov et al., “Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics,” Science, vol. 310, no. 5755, pp. 1793–1796, 2005.
[3]  L. S. Roach, H. Song, and R. F. Ismagilov, “Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants,” Analytical Chemistry, vol. 77, no. 3, pp. 785–796, 2005.
[4]  H. Song, D. L. Chen, and R. F. Ismagilov, “Reactions in droplets in microfluidic channels,” Angewandte Chemie—International Edition, vol. 45, no. 44, pp. 7336–7356, 2006.
[5]  B. T. C. Lau, C. A. Baitz, X. P. Dong, and C. L. Hansen, “A complete microfluidic screening platform for rational protein crystallization,” Journal of the American Chemical Society, vol. 129, no. 3, pp. 454–455, 2007.
[6]  D. L. Chen, G. J. Gerdts, and R. F. Ismagilov, “Using microfluidics to observe the effect of mixing on nucleation of protein crystals,” Journal of the American Chemical Society, vol. 127, no. 27, pp. 9672–9673, 2005.
[7]  W. Li, H. H. Pham, Z. Nie, B. MacDonald, A. Güenther, and E. Kumacheva, “Multi-step microfluidic polymerization reactions conducted in droplets: the internal trigger approach,” Journal of the American Chemical Society, vol. 130, no. 30, pp. 9935–9941, 2008.
[8]  Z. Hua, J. L. Rouse, A. E. Eckhardt et al., “Multiplexed real-time polymerase chain reaction on a digital microfluidic platform,” Analytical Chemistry, vol. 82, no. 6, pp. 2310–2316, 2010.
[9]  A. Huebner, M. Srisa-Art, D. Holt et al., “Quantitative detection of protein expression in single cells using droplet microfluidics,” Chemical Communications, vol. 2, no. 12, pp. 1218–1220, 2007.
[10]  L. H. Hung, K. M. Choi, W. Y. Tseng, Y. C. Tan, K. J. Shea, and A. P. Lee, “Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis,” Lab on a Chip, vol. 6, no. 2, pp. 174–178, 2006.
[11]  T. Hatakeyama, D. L. Chen, and R. F. Ismagilov, “Microgram-scale testing of reaction conditions in solution using nanoliter plugs in microfluidics with detection by MALDI-MS,” Journal of the American Chemical Society, vol. 128, no. 8, pp. 2518–2519, 2006.
[12]  J. Gong and C. J. Kim, “All-electronic droplet generation on-chip with real-time feedback control for EWOD digital microfluidics,” Lab on a Chip, vol. 8, no. 6, pp. 898–906, 2008.
[13]  A. R. Wheeler, “Chemistry: putting electrowetting to work,” Science, vol. 322, no. 5901, pp. 539–540, 2008.
[14]  K. Ahn, C. Kerbage, T. P. Hunt, R. M. Westervelt, D. R. Link, and D. A. Weitz, “Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices,” Applied Physics Letters, vol. 88, no. 2, Article ID 024104, pp. 1–3, 2006.
[15]  J. R. Millman, K. H. Bhatt, B. G. Prevo, and O. D. Velev, “Anisotropic particle synthesis in dielectrophoretically controlled microdroplet reactors,” Nature Materials, vol. 4, no. 1, pp. 98–102, 2005.
[16]  J. Z. Chen, S. M. Troian, A. A. Darhuber, and S. Wagner, “Effect of contact angle hysteresis on thermocapillary droplet actuation,” Journal of Applied Physics, vol. 97, no. 1, Article ID 014906, pp. 014906–9, 2005.
[17]  E. F. Greco and R. O. Grigoriev, “Thermocapillary migration of interfacial droplets,” Physics of Fluids, vol. 21, no. 4, Article ID 042105, 2009.
[18]  T. Franke, A. R. Abate, D. A. Weitz, and A. Wixforth, “Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices,” Lab on a Chip, vol. 9, no. 18, pp. 2625–2627, 2009.
[19]  M. Okochi, H. Tsuchiya, F. Kumazawa, M. Shikida, and H. Honda, “Droplet-based gene expression analysis using a device with magnetic force-based-droplet-handling system,” Journal of Bioscience and Bioengineering, vol. 109, no. 2, pp. 193–197, 2009.
[20]  Y. Zhang, S. Park, K. Liu, J. Tsuan, S. Yang, and T. H. Wang, “A surface topography assisted droplet manipulation platform for biomarker detection and pathogen identification,” Lab on a Chip, vol. 11, no. 3, pp. 398–406, 2011.
[21]  D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewar, and S. Anand, “Optical manipulation of airborne particles: techniques and applications,” Faraday Discussions, vol. 137, pp. 335–350, 2008.
[22]  J. K. Valley, S. Ningpei, A. Jamshidi, H. Y. Hsu, and M. C. Wu, “A unified platform for optoelectrowetting and optoelectronic tweezers,” Lab on a Chip, vol. 11, no. 7, pp. 1292–1297, 2011.
[23]  S. Y. Park, S. Kalim, C. Callahan, M. A. Teitell, and E. P. Y. Chiou, “A light-induced dielectrophoretic droplet manipulation platform,” Lab on a Chip, vol. 9, no. 22, pp. 3228–3235, 2009.
[24]  A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Optics Letters, vol. 11, no. 5, pp. 288–290, 1986.
[25]  J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Optics Communications, vol. 207, no. 1-6, pp. 169–175, 2002.
[26]  K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Applied Physics Letters, vol. 60, no. 7, pp. 807–809, 1992.
[27]  A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science, vol. 235, no. 4795, pp. 1517–1520, 1987.
[28]  A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature, vol. 330, no. 6150, pp. 769–771, 1987.
[29]  D. G. Grier, “A revolution in optical manipulation,” Nature, vol. 424, no. 6950, pp. 810–816, 2003.
[30]  U. Bockelmann, P. Thomen, B. Essevaz-Roulet, V. Viasnoff, and F. Heslot, “Unzipping DNA with optical tweezers: high sequence sensitivity and force flips,” Biophysical Journal, vol. 82, no. 3, pp. 1537–1553, 2002.
[31]  J. E. Molloy and M. J. Padgett, “Lights, action: optical tweezers,” Contemporary Physics, vol. 43, no. 4, pp. 241–258, 2002.
[32]  A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Physical Review Letters, vol. 24, no. 4, pp. 156–159, 1970.
[33]  A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Applied Physics Letters, vol. 19, no. 8, pp. 283–285, 1971.
[34]  A. Ashkin and J. M. Dziedzic, “Optical levitation of liquid drops by radiation pressure,” Science, vol. 187, no. 4181, pp. 1073–1075, 1975.
[35]  P. T. Nagy and G. P. Neitzel, “Optical levitation and transport of microdroplets: proof of concept,” Physics of Fluids, vol. 20, no. 10, Article ID 101703, 2008.
[36]  M. I. Kohira, A. Isomura, N. Magome, S. Mukai, and K. Yoshikawa, “Optical levitation of a droplet under a linear increase in gravitational acceleration,” Chemical Physics Letters, vol. 414, no. 4–6, pp. 389–392, 2005.
[37]  N. Jordanov and R. Zellner, “Investigations of the hygroscopic properties of ammonium sulfate and mixed ammonium sulfate and glutaric acid micro droplets by means of optical levitation and Raman spectroscopy,” Physical Chemistry Chemical Physics, vol. 8, no. 23, pp. 2759–2764, 2006.
[38]  R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Physical Chemistry Chemical Physics, vol. 6, no. 21, pp. 4924–4927, 2004.
[39]  L. Mitchem, R. J. Hopkins, J. Buajarern, A. D. Ward, and J. P. Reid, “Comparative measurements of aerosol droplet growth,” Chemical Physics Letters, vol. 432, no. 1–3, pp. 362–366, 2006.
[40]  N. Magome, M. I. Kohira, E. Hayata, S. Mukai, and K. Yoshikawa, “Optical trapping of a growing water droplet in air,” Journal of Physical Chemistry B, vol. 107, pp. 3988–3990, 2003.
[41]  K. J. Knox, J. P. Reid, K. L. Hanford, A. J. Hudson, and L. Mitchem, “Direct measurements of the axial displacement and evolving size of optically trapped aerosol droplets,” Journal of Optics A, vol. 9, no. 8, article S10, pp. S180–S188, 2007.
[42]  R. Symes, R. M. Sayer, and J. P. Reid, “Cavity enhanced droplet spectroscopy: principles, perspectives and prospects,” Physical Chemistry Chemical Physics, vol. 6, no. 3, pp. 474–487, 2004.
[43]  R. D. Leonardo, G. Ruocco, J. Leach et al., “Parametric resonance of optically trapped aerosols,” Physical Review Letters, vol. 99, no. 1, Article ID 010601, 2007.
[44]  L. Mitchem, J. Buajarern, R. J. Hopkins et al., “Spectroscopy of growing and evaporating water droplets: exploring the variation in equilibrium droplet size with relative humidity,” Journal of Physical Chemistry A, vol. 110, no. 26, pp. 8116–8125, 2006.
[45]  L. Mitchem, J. Buajarern, A. D. Ward, and J. P. Reid, “A strategy for characterizing the mixing state of immiscible aerosol components and the formation of multiphase aerosol particles through coagulation,” Journal of Physical Chemistry B, vol. 110, no. 28, pp. 13700–13703, 2006.
[46]  D. R. Burnham and D. McGloin, “Holographic optical trapping of aerosol droplets,” Optics Express, vol. 14, no. 9, pp. 4176–4181, 2006.
[47]  K. T. Gahagan and G. A. Swartzlander, “Trapping of low-index microparticles in an optical vortex,” Journal of the Optical Society of America B, vol. 15, no. 2, pp. 524–534, 1998.
[48]  K. T. Gahagan and G. A. Swartzlander, “Optical vortex trapping of particles,” Optics Letters, vol. 21, no. 11, pp. 827–829, 1996.
[49]  R. M. Lorenz, J. S. Edgar, G. D. M. Jeffries, Y. Zhao, D. McGloin, and D. T. Chiu, “Vortex-trap-induced fusion of femtoliter-volume aqueous droplets,” Analytical Chemistry, vol. 79, no. 1, pp. 224–228, 2007.
[50]  G. D. M. Jeffries, J. S. Kuo, and D. T. Chiu, “Dynamic modulation of chemical concentration in an aqueous droplet,” Angewandte Chemie—International Edition, vol. 46, no. 8, pp. 1326–1328, 2007.
[51]  D. T. Chiu and R. M. Lorenz, “Chemistry and biology in femtoliter and picoliter volume droplets,” Accounts of Chemical Research, vol. 42, no. 5, pp. 649–658, 2009.
[52]  M. L. Cordero, D. R. Burnham, C. N. Baroud, and D. McGloin, “Thermocapillary manipulation of droplets using holographic beam shaping: microfluidic pin ball,” Applied Physics Letters, vol. 93, no. 3, Article ID 034107, 2008.
[53]  M. R. D. S. Vincent, ?. Wunenburger, and J. P. Delville, “Laser switching and sorting for high speed digital microfluidics,” Applied Physics Letters, vol. 92, no. 15, Article ID 154105, 2008.
[54]  K. T. Kotz, K. A. Noble, and G. W. Faris, “Optical microfluidics,” Applied Physics Letters, vol. 85, no. 13, pp. 2658–2660, 2004.
[55]  W. Hu and A. T. Ohta, “Aqueous droplet manipulation by optically induced Marangoni circulation,” Microfluidics and Nanofluidics, vol. 11, no. 3, pp. 307–316, 2011.
[56]  S. Y. Park, T. H. Wu, Y. Chen, M. A. Teitell, and P. Y. Chiou, “High-speed droplet generation on demand driven by pulse laser-induced cavitation,” Lab on a Chip, vol. 11, no. 6, pp. 1010–1012, 2011.
[57]  Z. G. Li, K. Ando, J. Q. Yu, A. Q. Liu, J. B. Zhang, and C. D. Ohl, “Fast on-demand droplet fusion using transient cavitation bubbles,” Lab on a Chip, vol. 11, no. 11, pp. 1879–1885, 2011.
[58]  P. Y. Chiou, Z. Chang, and M. C. Wu, “Droplet manipulation with light on optoelectrowetting device,” Journal of Microelectromechanical Systems, vol. 17, no. 1, pp. 133–138, 2008.
[59]  P. Y. Chiou, H. Moon, H. Toshiyoshi, C. J. Kim, and M. C. Wu, “Light actuation of liquid by optoelectrowetting,” Sensors and Actuators A, vol. 104, no. 3, pp. 222–228, 2003.
[60]  H. S. Chuang, A. Kumar, and S. T. Wereley, “Open optoelectrowetting droplet actuation,” Applied Physics Letters, vol. 93, no. 6, Article ID 064104, 2008.
[61]  P. Y. Chiou, S. Y. Park, and M. C. Wu, “Continuous optoelectrowetting for picoliter droplet manipulation,” Applied Physics Letters, vol. 93, no. 22, Article ID 221110, 2008.
[62]  S. Y. Park, M. A. Teitell, and E. P. Y. Chiou, “Single-sided continuous optoelectrowetting (SCOEW) for droplet manipulation with light patterns,” Lab on a Chip, vol. 10, no. 13, pp. 1655–1661, 2010.
[63]  D. H. Lee, H. Hwang, and J. K. Park, “Generation and manipulation of droplets in an optoelectrofluidic device integrated with microfluidic channels,” Applied Physics Letters, vol. 95, no. 16, Article ID 164102, 2009.
[64]  S. Park, C. Pan, T. H. Wu et al., “Floating electrode optoelectronic tweezers: light-driven dielectrophoretic droplet manipulation in electrically insulating oil medium,” Applied Physics Letters, vol. 92, no. 15, Article ID 151101, 2008.
[65]  L. J. Radziemski and D. A. Cremers, Laser-Induced Plasmas and Applications, Marcel Dekker, New York, NY, USA, 1989.
[66]  N. O. Young, J. S. Goldstein, and M. J. Block, “The motion of bubbles in a vertical temperature gradient,” Journal of Fluid Mechanics, vol. 6, pp. 350–356, 1959.
[67]  K. D. Barton and R. S. Subramanian, “The migration of liquid drops in a vertical temperature gradient,” Journal of Colloid and Interface Science, vol. 133, no. 1, pp. 211–222, 1989.
[68]  B. Selva, V. Miralles, I. Cantat, and M. C. Jullien, “Thermocapillary actuation by optimized resistor pattern: bubbles and droplets displacing, switching and trapping,” Lab on a Chip, vol. 10, no. 14, pp. 1835–1840, 2010.
[69]  A. A. Darhuber, J. P. Valentino, J. M. Davis, S. M. Troian, and S. Wagner, “Microfluidic actuation by modulation of surface stresses,” Applied Physics Letters, vol. 82, no. 4, pp. 657–659, 2003.
[70]  C. N. Baroud, J. P. Delville, F. Gallaire, and R. Wunenburger, “Thermocapillary valve for droplet production and sorting,” Physical Review E, vol. 75, no. 4, Article ID 046302, 2007.
[71]  A. T. Ohta, A. Jamshidi, J. K. Valley, H. Y. Hsu, and M. C. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Applied Physics Letters, vol. 91, no. 7, Article ID 074103, 2007.
[72]  Y. R. Shen, The Principles of Nonlinear Optics, Wiley, New York, NY, USA, 1984.
[73]  E. A. Brujan, K. Nahen, P. Schmidt, and A. Vogel, “Dynamics of laser-induced cavitation bubbles near an elastic boundary,” Journal of Fluid Mechanics, vol. 433, pp. 251–281, 2001.
[74]  R. K. Chang, J. H. Eickmans, W.-F. Hsieh, C. F. Wood, J.-Z. Zhang, and J.-b. Zheng, “Laser-induced breakdown in large transparent water droplets,” Applied Optics, vol. 27, no. 12, pp. 2377–2385, 1988.
[75]  A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” Journal of the Acoustical Society of America, vol. 100, no. 1, pp. 148–165, 1996.
[76]  E. Zwaan, S. Le Gac, K. Tsuji, and C. D. Ohl, “Controlled cavitation in microfluidic systems,” Physical Review Letters, vol. 98, no. 25, Article ID 254501, 2007.
[77]  K. R. Rau, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, “Pulsed laser microbeam-induced cell lysis: time-resolved imaging and analysis of hydrodynamic effects,” Biophysical Journal, vol. 91, no. 1, pp. 317–329, 2006.
[78]  A. N. Hellman, K. R. Rau, H. H. Yoon et al., “Laser-induced mixing in microfluidic channels,” Analytical Chemistry, vol. 79, no. 12, pp. 4484–4492, 2007.
[79]  R. Dijkink and C. D. Ohl, “Laser-induced cavitation based micropump,” Lab on a Chip, vol. 8, no. 10, pp. 1676–1681, 2008.
[80]  T. H. Wu, L. Gao, Y. Chen, K. Wei, and P. Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Applied Physics Letters, vol. 93, no. 14, Article ID 144102, 2008.
[81]  P.-Y. Chiou, T.-H. Wu, S. Park, and Y. Chen, “Pulse laser driven ultrafast micro and nanofluidic system,” in Proceedings of the SPIE, vol. 7759, p. 77590Z, San Diego, Calif, USA, 2010.
[82]  P. R. C. Gascoyne, J. V. Vykoukal, J. A. Schwartz et al., “Dielectrophoresis-based programmable fluidic processors,” Lab on a Chip, vol. 4, no. 4, pp. 299–309, 2004.
[83]  H. J. J. Verheijen and M. W. J. Prins, “Reversible electrowetting and trapping of charge: model and experiments,” Langmuir, vol. 15, no. 20, pp. 6616–6620, 1999.
[84]  H. Moon, S. K. Cho, R. L. Garrell, and C. J. Kim, “Low voltage electrowetting-on-dielectric,” Journal of Applied Physics, vol. 92, no. 7, pp. 4080–4087, 2002.
[85]  A. R. Wheeler, H. Moon, C. A. Bird et al., “Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS,” Analytical Chemistry, vol. 77, no. 2, pp. 534–540, 2005.
[86]  S. K. Cho, H. Moon, and C. J. Kim, “Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits,” Journal of Microelectromechanical Systems, vol. 12, no. 1, pp. 70–80, 2003.
[87]  M. Abdelgawad, S. L. S. Freire, H. Yang, and A. R. Wheeler, “All-terrain droplet actuation,” Lab on a Chip, vol. 8, no. 5, pp. 672–677, 2008.
[88]  M. Vallet, B. Berge, and L. Vovelle, “Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films,” Polymer, vol. 37, no. 12, pp. 2465–2470, 1996.
[89]  S. N. Pei, J. K. Valley, S. L. Neale, A. Jamshidi, H. Y. Hsu, and M. C. Wu, “Light-actuated digital microfluidics for large-scale, parallel manipulation of arbitrarily sized droplets,” in Proceedings of the 23rd IEEE International Conference on Micro Electro Mechanical Systems (MEMS '10), pp. 252–255, January 2010.
[90]  T. B. Jones, Electromechanics of Particles, Cambridge University Press, 1995.
[91]  H. Pohl, Dielectrophoresis, Cambridge University Press, Cambridge, UK, 1978.
[92]  P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature, vol. 436, no. 7049, pp. 370–372, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133