全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Effects of Wheat and Oat-Based Whole Grain Foods on Serum Lipoprotein Size and Distribution in Overweight Middle Aged People: A Randomised Controlled Trial

DOI: 10.1371/journal.pone.0070436

Full-Text   Cite this paper   Add to My Lib

Abstract:

Introduction Epidemiological studies suggest three daily servings of whole-grain foods (WGF) might lower cardiovascular disease risk, at least partly by lowering serum lipid levels. We have assessed the effects of consuming three daily portions of wholegrain food (provided as wheat or a mixture of wheat and oats) on lipoprotein subclass size and concentration in a dietary randomised controlled trial involving middle aged healthy individuals. Methods After a 4-week run-in period on a refined diet, volunteers were randomly allocated to a control (refined diet), wheat, or wheat + oats group for 12 weeks. Our servings were determined in order to significantly increase the intakes of non starch polysaccharides to the UK Dietary Reference Value of 18 g per day in the whole grain groups (18.5 g and 16.8 g per day in the wheat and wheat + oats groups respectively in comparison with 11.3 g per day in the control group). Outcome measures were serum lipoprotein subclasses' size and concentration. Habitual dietary intake was assessed prior and during the intervention. Of the 233 volunteers recruited, 24 withdrew and 3 were excluded. Results At baseline, significant associations were found between lipoprotein size and subclasses' concentrations and some markers of cardiovascular risk such as insulin resistance, blood pressure and serum Inter cellular adhesion molecule 1 concentration. Furthermore, alcohol and vitamin C intake were positively associated with an anti-atherogenic lipoprotein profile, with regards to lipoprotein size and subclasses' distribution. However, none of the interventions with whole grain affected lipoprotein size and profile. Conclusion Our results indicate that three portions of wholegrain foods, irrelevant of the type (wheat or oat-based) do not reduce cardiovascular risk by beneficially altering the size and distribution of lipoprotein subclasses. Trial Registration www.Controlled-Trials.com ISRCTN 27657880.

References

[1]  Jacobs DR, Meyer KA, Hushi LH, Folsom AR (1998) Whole grain intake may reduce the risk of ischaemic heart disease death in postmenopausal women: the Iowa Women's Health Study. Am J Clin Nutr 68: 248–257.
[2]  Liu S, Stampfer MJ, Hu FB, Giovannucci E, Rimm E, et al. (1999) Whole-grain consumption and risk of CHD: results from the Nurses' Health Study. Am J Clin Nutr 70: 412–419.
[3]  Salmeron J, Manson JE, Stampfer MJ, Colditz GA, Wing AL, et al. (1997) Dietary fiber, glycaemic load, and risk of non-insulin-dependent diabetes mellitus in women. J Am Med Assoc 277: 472–477.
[4]  Meyer KA, Kushi LH, Jacobs DR Jr, Slavin J, Sellers TA, et al. (2000) Carbohydrates, dietary fiber, and incidence of type 2 diabetes in older women. Am J Clin Nutr 71: 921–930.
[5]  Anderson JW, Hanna TJ (1999) Impact of non-digestible carbohydrates on serum lipoproteins and risk for cardiovascular disease. J Nutr 129: 1457–1466.
[6]  Marchmann P, Sandstrom B, Jespersen J (1994) Low-fat, high-fiber diet favourably affects several independent risks markers of ischaemic heart disease: observations on blood lipids, coagulation, and fibrinolysis from a trial of middle-aged Danes. Am J Clin Nutr 59: 935–939.
[7]  Anderson JW (1995) cholesterol-lowering effects of soluble fiber in humans. In: Kritchevsky D, Bonfield C, editors. Dietary fiber in health and disease. St Paul, MN: Eagan Press. 126–145.
[8]  Kelly SAM (2007) Wholegrain cereals for coronary heart disease. Cochrane Database of Systematic Reviews 2 CD005051. DOI:10.1002./14651858. CD005051.pub2.
[9]  Ripsin CM, Keenan JM, Jacobs DR Jr, Elmer PJ, Welch RR, et al. (1992) Oat products and lipid lowering: a meta-analysis. J Am Med Assoc 267: 3317–3325.
[10]  Truswell AS (2002) Cereal grains and coronary heart disease. Eur J Clin Nutr 56: 1–14.
[11]  Anderson JW, Hanna TJ (1999) Impact of non-digestible carbohydrates on serum lipoproteins and risk for cardiovascular disease. J Nutr 129: 1457–1466.
[12]  Tighe P, Duthie G, Vaughan N, Brittenden J, Mutch W, et al. (2010) Effect of increased consumption of whole-grain foods on blood pressure and other cardiovascular risk markers in healthy middle-aged persons: a randomized controlled trial. Am J Clin Nutr 92: 733–740.
[13]  Davy BM, Davy PD, Ho RC, Beske SD, Davrath R, et al. (2002) High-fiber oat cereal compared with wheat cereal consumption favourably alters LDL-cholesterol subclass and particle numbers in middle-aged and older men. Am J Clin Nutr 76: 351–358.
[14]  Wolever TM, Tosh SM, Gibbs AL, Brand-Miller J, Duncan AM, et al. (2010) Physicochemical properties of oat beta-glucan influence its ability to reduce serum LDL cholesterol in humans: a randomized clinical trial. Am J Clin Nutr 92: 723–732.
[15]  Reyna-Villasmil N, Bermudez-Pirela V, Mengual-Moreno E, Arias N, Cano-Ponce C, et al. (2007) Oat-derived beta-glucan significantly improves HDLC and diminishes LDLC and non-HDL cholesterol in overweight individuals with mild hypercholesterolemia. Am J Ther 14: 203–212.
[16]  Karmally V, Montez MG, Palmas W, Martinez W, Branstetter A, et al. (2005) Cholesterol-lowering benefits of oat-containing cereal in hispanic Americans. J Am Diet Assoc 105: 967–970.
[17]  Smith KN, Queenan KM, Thomas W, Fulcher RG, Slavin JL (2008) Physiological effects of concentrated barley beta-glucan in middly hypercholesterolemic adults. J Am Coll Nutr 27: 434–440.
[18]  Queenan KM, Stewart ML, Smith KN, Thomas W, Fulcher RG, et al. (2007) Concentrated oat b-glucan, a fermentable fiber, lowers serum cholesterol in hypercholesterolemic adults in a randomised controlled trial. Nutrition Journal 6: 6.
[19]  Scottish Office Department of Health (2006) Eating for health: a diet action plan for Scotland. Available: http://www.open.gov.uk.scottoff/diet.htm. Accessed 2012 November 27.
[20]  Anderson JW, Hanna TJ (2000) Whole grain foods and heart disease risk. J Am Coll Nutr 19: 291s–299s.
[21]  Schulz KF, Altman DG, Moher D, CONSORT Group. CONSORT 2010 Statement: Updated Guidelines for Reporting Parallel Group Randomised Trials. PLoS Med 7(3): e1000251 doi:10.1371/journal.pmed.1000251.
[22]  DEFRA economics and statistics, 2001/2 Expenditure and Food Survey. Available: http://www.defra.gov.uk/evidence/statist?ics/foodfarm/food/familyfood/index.htm. Accessed 2012 November 27.
[23]  Kathiresan S, Otvos JD, Sullivan LM, Keyes MJ, Schaefer EJ, et al. (2006) Increased small low density lipoprotein particle number, a prominent feature of the metabolic syndrome in the Framingham heart study. Circulation 113: 20–29.
[24]  Bloomgarden ZT (2011) World congress on insulin resistance, diabetes and cardiovascular disease. Diabetes Care 34: e140–e144.
[25]  Nakano S, Kuboki K, Matsumoto T, Nishimura C, Yoshino G (2010) Small dense LDL and high-sensitivity C-reactive protein (hs-CRP) in metabolic syndrome with type 2 diabetes mellitus. J atheroscler Thromb 17: 410–415.
[26]  Burns SF, Arslanian SA (2009) Waist Circumference, Atherogenic Lipoproteins, and Vascular Smooth Muscle Biomarkers in Children. J Clin Endocrinol Metab 94: 4914–4922.
[27]  Baker J, Ayenew W, Quick H, Hullsiek KH, Tracy R, et al. (2010) High density lipoprotein particles and markers of inflammation and thrombotic activity in patients with untreated HIV infection. J Infect Dis 210: 285–292.
[28]  Arsenault BJ, Lemieux I, Després JP, Wareham NJ, Stroes ES, et al. (2009) HDL particle size and the risk of coronary heart disease in apparently healthy men and women: the EPIC-Norfolk prospective population study. Atherosclerosis 206: 276–281.
[29]  Ohta T, Saku K, Takata K, Adachi N (1999) Soluble vascular cell-adhesion molecule-1 and soluble intercellular adhesion molecule-1 correlate with lipid and apolipoprotein risk factors for coronary artery disease in children. Eur J Pediatr 158: 592–598.
[30]  Mora S, Otvos JD, Rosenson RS, Pradhan A, Buring JE, et al. (2010) Lipoprotein particle size and concentration by nuclear magnetic resonance and incident type 2 diabetes in women. Diabetes 59: 1153–1160.
[31]  Perez-Mendez O, Torres-Tamayo M, Posadas-Romero C, Vidaure Garcé V, Carreón-Torres E, et al. (2007) Abnormal HDL subclasses distribution in overweight children with insulin resistance or type 2 diabetes mellitus. Clin Chim Acta 376: 17–22.
[32]  Freedman DS, Bowman BA, Otvos JD, Srinivasan SR, Berenson GS (2000) Levels and correlates of LDL and VLDL particles sizes among children: the Bogalusa heart study. Atherosclerosis 152: 441–449.
[33]  Burns SF, Lee S, Arslanian SA (2009) In vivo insulin sensitivity and lipoprotein size and concentration in black and white children. Diabetes care 32: 2087–2093.
[34]  Magge SN, Stettler N, Koren D, Levitt Katz LE, Gallagher PR, et al. (2001) Adiponectin is associated with favourable lipoprotein profile, independent of BMI and insulin resistance, in adolescents. J Clin Endocrinol Metab 96: 1549–1554.
[35]  Awazawa M, Ueki K, Inabe K, Yamauchi T, Kubota N, et al. (2011) Adiponectin enhances insulin sensitivity by increasing hepatic IRS-2 expression via a macrophage-derived IL-6-dependent pathway. Cell Metab 13: 401–412.
[36]  Annuzzi G, Rivellese AA, Wang W, Patti L, Vaccaro O, et al. (2012) Lipoprotein subfractions and dietary intake of n-3 fatty acid: the genetics of coronary artery disease in Alaska natives study. Am J Clin Nutr 95: 1315–1322.
[37]  Bos G, Poortvliet MC, Scheffer PG, Decker JM, Ocke MC, et al. (2007) Dietary polyunsaturated fat intake is associated with low density lipoprotein size, but not with susceptibility to oxidation in subjects with impaired glucose metabolism and type II diabetes: the Hoorn study. Eur J Clin Nutr 61: 205–211.
[38]  Muth ND, Laughin GA, von Muhlen D, Sidney C, Smith T Jr, et al. (2010) HDL subclasses are a potential intermediary between alcohol intake and reduced risk of cardiovascular disease: The Rancho Bernardo Study. Brit J Nutr 104: 1034–1042.
[39]  McRae MP (2008) Vitamin C supplementation lowers serum low-density lipoprotein cholesterol and triglycerides: a meta-analysis of 13 randomized controlled trials. J Chiro Med 7: 48–58.
[40]  Speeckaert MM, Taes YE, De Buyzere ML, Christophe AB, Kaufman JM, et al. (2010) Investigation of the potential association of vitamin D binding protein with lipoproteins. Ann Clin Biochem http://www.ncbi.nlm.nih.gov/pubmed/20144?976 47: 143–150.
[41]  Behall KM, Schoffield DJ, Hallfrish J (2004) Diet containing barley significantly reduce lipids in middly hypercholesterolemic men and women. Am J Clin Nutr 80: 1185–1193.
[42]  Brownlee IA, Moore C, Chatfield M, Richardson DP, Ashby P, et al. (2010) Markers of cardiovascular risk are not changed by increased whole-grain intake: the WHOLEheart study, a randomised, controlled dietary intervention. Br J Nutr 104: 125–134.
[43]  Tucker AJ, MacKay KA, Robinson LE, Bakovic M, Graham TE, et al. (2010) The effect of whole grain wheat sourdough bread consumption on serum lipids in healthy normoglycemic/normoinsulinemic and hyperglycemic/hyperinsulinemic adults depends on presence of the APOE E3/E3 genotype: a randomized controlled trial. Nutrition & Metabolism 7: 37–50.
[44]  Superko HR, Gadesam RR (2008) Is it LDL particle size or number that correlates with risk for cardiovascular disease? Curr Atheroscler Rep 10: 377–385.
[45]  Rizzo M, Berneis K (2006) Low density lipoprotein size and cardiovascular risk assessment. Q J Med 99: 1–14.
[46]  Otvos JD, Collins D, Freedman DS, Barboriak JJ, Anderson AJ, et al. (2006) Low density lipoprotein and high density lipoprotein particle subclasses predict coronary events and are favourably changes by gemfibrozil therapy in the Veterans Affairs High Density Lipoprotein Intervention Trial. Circulation 113: 1556–1563.
[47]  Freemantle N (2001) Interpreting the results of secondary end points and subgroup analyses in clinical trials: should we lock the crazy aunt in the attic? BMJ 322: 989–991.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133