全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Mouse Strain Determines Cardiac Growth Potential

DOI: 10.1371/journal.pone.0070512

Full-Text   Cite this paper   Add to My Lib

Abstract:

Rationale The extent of heart disease varies from person to person, suggesting that genetic background is important in pathology. Genetic background is also important when selecting appropriate mouse models to study heart disease. This study examines heart growth as a function of strain, specifically C57BL/6 and DBA/2 mouse strains. Objective In this study, we test the hypothesis that two strains of mice, C57BL/6 and DBA/2, will produce varying degrees of heart growth in both physiological and pathological settings. Methods and Results Differences in heart dimensions are detectable by echocardiography at 8 weeks of age. Percentages of cardiac progenitor cells (c-kit+ cells) and mononucleated cells were found to be in a higher percentage in DBA/2 mice, and more tri- and quad-nucleated cells were in C57BL/6 mice. Cardiomyocyte turnover shows no significant changes in mitotic activity, however, there is more apoptotic activity in DBA/2 mice. Cardiomyocyte cell size increased with age, but increased more in DBA/2 mice, although percentages of nucleated cells remained the same in both strains. Two-week isoproterenol stimulation showed an increase in heart growth in DBA/2 mice, both at cardiomyocyte and whole heart level. In isoproterenol-treated DBA/2 mice, there was also a greater expression level of the hypertrophy marker, ANF, compared to C57BL/6 mice. Conclusion We conclude that the DBA/2 mouse strain has a more immature cardiac phenotype, which correlates to a cardiac protective response to hypertrophy in both physiological and pathological stimulations.

References

[1]  Kajstura J, Gurusamy N, Ogórek B, Goichberg P, Clavo-Rondon C et al. (2010) Myocyte turnover in the aging human heart. Circ Res 107: 1374–1386. doi:10.1161/CIRCRESAHA.110.231498. PubMed: 21088285.
[2]  Gerstenblith G, Frederiksen J, Yin FC, Fortuin NJ, Lakatta EG et al. (1977) Echocardiographic assessment of a normal adult aging population. Circulation 56: 273–278. doi:10.1161/01.CIR.56.2.273. PubMed: 872321.
[3]  Porrello ER, Olson EN (2010) Building a New Heart From Old Parts: Stem Cell Turnover in the Aging Heart. Circ Res 107: 1292–1294. doi:10.1161/CIRCRESAHA.110.235168. PubMed: 21106945.
[4]  Chen X, Wilson RM, Kubo H, Berretta RM, Harris DM et al. (2007) Adolescent Feline Heart Contains a Population of Small, Proliferative Ventricular Myocytes With Immature Physiological Properties. Circ Res 100: 536–544. doi:10.1161/01.RES.0000259560.39234.99. PubMed: 17272809.
[5]  Rota M, Hosoda T, De Angelis A, Arcarese ML, Esposito G et al. (2007) The Young Mouse Heart Is Composed of Myocytes Heterogeneous in Age and Function. Circ Res 101: 387–399. doi:10.1161/CIRCRESAHA.107.151449. PubMed: 17601802.
[6]  Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F et al. (2009) Evidence for cardiomyocyte renewal in humans. Science 324: 98–102. doi:10.1126/science.1164680. PubMed: 19342590.
[7]  Kajstura J, Urbanek K, Perl S, Hosoda T, Zheng H et al. (2010) Cardiomyogenesis in the adult human heart. Circ Res 107: 305–315. doi:10.1161/CIRCRESAHA.110.223024. PubMed: 20522802.
[8]  Tallini YN, Greene KS, Craven M, Spealman A, Breitbach M et al. (2009) c-kit expression identifies cardiovascular precursors in the neonatal heart. Proc Natl Acad Sci USA 106: 1808–1813. doi:10.1073/pnas.0808920106. PubMed: 19193854.
[9]  Limana F, Zacheo A, Mocini D, Mangoni A, Borsellino G et al. (2007) Identification of Myocardial and Vascular Precursor Cells in Human and Mouse Epicardium. Circ Res 101: 1255–1265. doi:10.1161/CIRCRESAHA.107.150755. PubMed: 17947800.
[10]  Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F et al. (2003) Adult Cardiac Stem Cells Are Multipotent and Support Myocardial Regeneration. Cell 114: 763-776. doi:10.1016/S0092-8674(03)00687-1. PubMed: 14505575.
[11]  Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V et al. (2003) Cardiac progenitor cells from adult myocardium: Homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 100: 12313. doi:10.1073/pnas.2132126100. PubMed: 14530411.
[12]  Anversa P, Kajstura J, Leri A, Bolli R (2006) Life and Death of Cardiac Stem Cells A Paradigm Shift in Cardiac Biology. Am Heart Assoc.. pp. 1451-1463.
[13]  Li M, Naqvi N, Yahiro E, Liu K, Powell PC et al. (2008) c-kit Is Required for Cardiomyocyte Terminal Differentiation. Circ Res 102: 677–685. doi:10.1161/CIRCRESAHA.107.161737. PubMed: 18258857.
[14]  Fransioli J, Bailey B, Gude NA, Cottage CT, Muraski JA et al. (2008) Evolution of The c-kit Positive Cell Response to Pathological Challenge in the Myocardium. Stem Cells: 2007.
[15]  Hsieh PCH, Segers VFM, Davis ME, MacGillivray C, Gannon J et al. (2007) Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med 13: 970-974. doi:10.1038/nm1618. PubMed: 17660827.
[16]  Lyngb?k S, Schneider M, Hansen JL, Sheikh SP (2007) Cardiac regeneration by resident stem and progenitor cells in the adult heart. Basic Res Cardiol 102: 101-114. doi:10.1007/s00395-007-0638-3. PubMed: 17216393.
[17]  Urbanek K, Quaini F, Tasca G, Torella D, Castaldo C et al. (2003) From The Cover: Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proc Natl Acad Sci USA 100: 10440–10445. doi:10.1073/pnas.1832855100. PubMed: 12928492.
[18]  Urbanek K, Rota M, Cascapera S, Bearzi C, Nascimbene A et al. (2005) Cardiac Stem Cells Possess Growth Factor-Receptor Systems That After Activation Regenerate the Infarcted Myocardium, Improving Ventricular Function and Long-Term Survival. Am Heart Assoc.. pp. 663-673.
[19]  van den Borne SW, van de Schans VA, Strzelecka AE, Vervoort-Peters HT, Lijnen PM et al. (2009) Mouse strain determines the outcome of wound healing after myocardial infarction. Cardiovasc Res 84: 273–282. doi:10.1093/cvr/cvp207. PubMed: 19542177.
[20]  Shah AP, Siedlecka U, Gandhi A, Navaratnarajah M, Abou A (2010) Genetic background affects function and intracellular calcium regulation of mouse hearts. Cardiovasc Res 87: 683–693. doi:10.1093/cvr/cvq111. PubMed: 20413651.
[21]  Barrick CJ, Rojas M, Schoonhoven R, Smyth SS, Threadgill DW (2007) Cardiac response to pressure overload in 129S1/SvImJ and C57BL/6J mice: temporal- and background-dependent development of concentric left ventricular hypertrophy. Am J Physiol Heart Circ Physiol 292: H2119-H2130. doi:10.1152/ajpheart.00816.2006. PubMed: 17172276.
[22]  de Haan G, Van Zant G (1997) Intrinsic and extrinsic control of hemopoietic stem cell numbers: mapping of a stem cell gene. J Exp Med 186: 529–536. doi:10.1084/jem.186.4.529. PubMed: 9254651.
[23]  de Haan G, Nijhof W, Van Zant G (1997) Mouse strain-dependent changes in frequency and proliferation of hematopoietic stem cells during aging: correlation between lifespan and cycling activity. Blood 89: 1543–1550. PubMed: 9057635.
[24]  Pfister O, Oikonomopoulos A, Sereti K-I, Sohn RL, Cullen D et al. (2008) Role of the ATP-Binding Cassette Transporter Abcg2 in the Phenotype and Function of Cardiac Side Population Cells. Circ Res 103: 825-835. doi:10.1161/CIRCRESAHA.108.174615. PubMed: 18787193.
[25]  Pfister O, Mouquet F, Jain M, Summer R, Helmes M et al. (2005) CD31-but Not CD31+ Cardiac Side Population Cells Exhibit Functional Cardiomyogenic Differentiation. Am Heart Assoc.. pp. 52-61.
[26]  Anversa P, Leri A, Beltrami CA, Guerra S, Kajstura J (1998) Myocyte death and growth in the failing heart. Lab Invest 78: 767-786. PubMed: 9690556.
[27]  Miyamoto S, Kawaguchi N, Ellison GM, Matsuoka R, Shin'oka T et al. (2010) Characterization of long-term cultured c-kit+ cardiac stem cells derived from adult rat hearts. Stem Cells Dev 19: 105-116. doi:10.1089/scd.2009.0041. PubMed: 19580375.
[28]  Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A et al. (2007) Human cardiac stem cells. Proc Natl Acad Sci USA 104: 14068–14073. doi:10.1073/pnas.0706760104. PubMed: 17709737.
[29]  Szabó J, Csáky L, Szegi JCs ky L, Szegi J (1975) Experimental cardiac hypertrophy induced by isoproterenol in the rat. Acta Physiol Acad Sci Hung 46: 281–285. PubMed: 143367.
[30]  Krenek P, Kmecova J, Kucerova D, Bajuszova Z, Musil P et al. (2009) Isoproterenol-induced heart failure in the rat is associated with nitric oxide-dependent functional alterations of cardiac function. Eur J Heart Fail 11: 140–146. doi:10.1093/eurjhf/hfn026. PubMed: 19168511.
[31]  Faulx MD, Chandler MP, Zawaneh MS, Stanley WC, Hoit BD (2007) Mouse strain-specific differences in cardiac metabolic enzyme activities observed in a model of isoproterenol-induced cardiac hypertrophy. Clin Exp Pharmacol Physiol 34: 77-80. doi:10.1111/j.1440-1681.2007.04531.x. PubMed: 17201739.
[32]  Faulx MD, Ernsberger P, Vatner D, Hoffman RD, Lewis W et al. (2005) Strain-dependent {beta}-adrenergic receptor function influences myocardial responses to isoproterenol stimulation in mice. Am J Physiol Heart Circ Physiol 289: H30–H36. doi:10.1152/ajpheart.00636.2004. PubMed: 15749746.
[33]  Olivetti G, Cigola E, Maestri R, Corradi D, Lagrasta C et al. (1996) Aging, Cardiac Hypertrophy and Ischemic Cardiomyopathy Do Not Affect the Proportion of Mononucleated and Multinucleated Myocytes in the Human Heart. J Mol Cell Cardiol 28: 1463-1477. doi:10.1006/jmcc.1996.0137. PubMed: 8841934.
[34]  Benjamin IJ, Jalil JE, Tan LB, Cho K, Weber KT et al. (1989) Isoproterenol-induced myocardial fibrosis in relation to myocyte necrosis. Circ Res 65: 657–670. doi:10.1161/01.RES.65.3.657. PubMed: 2527639.
[35]  Anversa P, Leri A, Rota M, Hosoda T, Bearzi C et al. (2007) Concise Review: Stem Cells, Myocardial Regeneration, and Methodological Artifacts. Stem Cells 25: 589–601. PubMed: 17124006.
[36]  Kubo H, Jaleel N, Kumarapeli A, Berretta RM, Bratinov G et al. (2008) Increased cardiac myocyte progenitors in failing human hearts. Circulation 118: 649–657. doi:10.1161/CIRCULATIONAHA.107.761031. PubMed: 18645055.
[37]  Kajstura J, Leri A, Finato N, Di Loreto C, Beltrami CA et al. (1998) Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci U S A 95: 8801–8805. doi:10.1073/pnas.95.15.8801. PubMed: 9671759.
[38]  Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N et al. (2001) Evidence That Human Cardiac Myocytes Divide after Myocardial Infarction. N Engl J Med 344: 1750–1757. doi:10.1056/NEJM200106073442303. PubMed: 11396441.
[39]  Goldspink DF, Burniston JG, Tan LB (2003) Cardiomyocyte death and the ageing and failing heart. Exp Physiol 88: 447-458. doi:10.1113/eph8802549. PubMed: 12719770.
[40]  Chimenti C, Kajstura J, Torella D, Urbanek K, Heleniak H et al. (2003) Senescence and Death of Primitive Cells and Myocytes Lead to Premature Cardiac Aging and Heart Failure. Am Heart Assoc.. pp. 604-613.
[41]  Zaruba MM, Soonpaa M, Reuter S, Field LJ (2010) Cardiomyogenic potential of c-kit+-expressing cells derived from neonatal and adult mouse hearts. Circulation 121: 1992–2000. doi:10.1161/CIRCULATIONAHA.109.909093. PubMed: 20421520.
[42]  Ferreira-Martins J, Rondon-Clavo C, Tugal D, Korn JA, Rizzi R et al. (2009) Spontaneous calcium oscillations regulate human cardiac progenitor cell growth. Circ Res 105: 764–774. doi:10.1161/CIRCRESAHA.109.206698. PubMed: 19745162.
[43]  Torella D, Rota M, Nurzynska D, Musso E, Monsen A et al. (2004) Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ Res 94: 514–524. doi:10.1161/01.RES.0000117306.10142.50. PubMed: 14726476.
[44]  Rota M, Padin-Iruegas ME, Misao Y, De Angelis A, Maestroni S et al. (2008) Local Activation or Implantation of Cardiac Progenitor Cells Rescues Scarred Infarcted Myocardium Improving Cardiac Function. Circ Res 103: 107–116. doi:10.1161/CIRCRESAHA.108.178525. PubMed: 18556576.
[45]  Cameron VA, Aitken GD, Ellmers LJ, Kennedy MA, Espiner EA (1996) The sites of gene expression of atrial, brain, and C-type natriuretic peptides in mouse fetal development: temporal changes in embryos and placenta. Endocrinology 137: 817–824. doi:10.1210/en.137.3.817. PubMed: 8603590.
[46]  Razeghi P, Young ME, Alcorn JL, Moravec CS, Frazier OH et al. (2001) Metabolic gene expression in fetal and failing human heart. Circulation 104: 2923–2931. doi:10.1161/hc4901.100526. PubMed: 11739307.
[47]  Blizard DA, Lionikas A, Vandenbergh DJ, Vasilopoulos T, Gerhard GS et al. (2009) Blood pressure and heart rate QTL in mice of the B6/D2 lineage: sex differences and environmental influences. Physiol Genomics 36: 158–166. PubMed: 19066325.
[48]  Olivetti G, Ricci R, Anversa P (1987) Hyperplasia of myocyte nuclei in long-term cardiac hypertrophy in rats. J Clin Invest 80: 1818–1821. doi:10.1172/JCI113278. PubMed: 2960697.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133