全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Toxoplasma gondii Sporozoites Invade Host Cells Using Two Novel Paralogues of RON2 and AMA1

DOI: 10.1371/journal.pone.0070637

Full-Text   Cite this paper   Add to My Lib

Abstract:

Toxoplasma gondii is an obligate intracellular parasite of the phylum Apicomplexa. The interaction of two well-studied proteins, Apical Membrane Antigen 1 (AMA1) and Rhoptry Neck protein 2 (RON2), has been shown to be critical for invasion by the asexual tachyzoite stage. Recently, two paralogues of these proteins, dubbed sporoAMA1 and sporoRON2 (or RON2L2), respectively, have been identified but not further characterized in proteomic and transcriptomic analyses of Toxoplasma sporozoites. Here, we show that sporoAMA1 and sporoRON2 localize to the apical region of sporozoites and that, in vitro, they interact specifically and exclusively, with no detectable interaction of sporoAMA1 with generic RON2 or sporoRON2 with generic AMA1. Structural studies of the interacting domains of sporoRON2 and sporoAMA1 indicate a novel pairing that is similar in overall form but distinct in detail from the previously described interaction of the generic pairing. Most notably, binding of sporoRON2 domain 3 to domains I/II of sporoAMA1 results in major alterations in the latter protein at the site of binding and allosterically in the membrane-proximal domain III of sporoAMA1 suggesting a possible role in signaling. Lastly, pretreatment of sporozoites with domain 3 of sporoRON2 substantially impedes their invasion into host cells while having no effect on tachyzoites, and vice versa for domain 3 of generic RON2 (which inhibits tachyzoite but not sporozoite invasion). These data indicate that sporozoites and tachyzoites each use a distinct pair of paralogous AMA1 and RON2 proteins for invasion into host cells, possibly due to the very different environment in which they each must function.

References

[1]  Dobrowolski JM, Sibley LD (1996) Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. Cell 84: 933–939.
[2]  Keeley A, Soldati D (2004) The glideosome: a molecular machine powering motility and host-cell invasion by Apicomplexa. Trends Cell Biol 14: 528–532.
[3]  Alexander DL, Mital J, Ward GE, Bradley P, Boothroyd JC (2005) Identification of the Moving Junction Complex of Toxoplasma gondii: A Collaboration between Distinct Secretory Organelles. PLoS Pathog 1: e17.
[4]  Lebrun M, Michelin A, El Hajj H, Poncet J, Bradley PJ, et al. (2005) The rhoptry neck protein RON4 re-localizes at the moving junction during Toxoplasma gondii invasion. Cell Microbiol 7: 1823–1833.
[5]  Alexander DL, Arastu-Kapur S, Dubremetz JF, Boothroyd JC (2006) Plasmodium falciparum AMA1 binds a rhoptry neck protein homologous to TgRON4, a component of the moving junction in Toxoplasma gondii. Eukaryot Cell 5: 1169–1173.
[6]  Besteiro S, Michelin A, Poncet J, Dubremetz JF, Lebrun M (2009) Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion. PLoS Pathog 5: e1000309.
[7]  Collins CR, Withers-Martinez C, Hackett F, Blackman MJ (2009) An inhibitory antibody blocks interactions between components of the malarial invasion machinery. PLoS Pathog 5: e1000273.
[8]  Straub KW, Cheng SJ, Sohn CS, Bradley PJ (2009) Novel components of the Apicomplexan moving junction reveal conserved and coccidia-restricted elements. Cell Microbiol 11: 590–603.
[9]  Richard D, MacRaild CA, Riglar DT, Chan JA, Foley M, et al. (2010) Interaction between Plasmodium falciparum apical membrane antigen 1 and the rhoptry neck protein complex defines a key step in the erythrocyte invasion process of malaria parasites. J Biol Chem 285: 14815–14822.
[10]  Aikawa M, Miller LH, Johnson J, Rabbege J (1978) Erythrocyte entry by malarial parasites: a moving junction between erythrocyte and parasite. J Cell Biol 77: 72–82.
[11]  Michel R, Schupp K, Raether W, Bierther FW (1980) Formation of a close junction during invasion of erythrocytes by Toxoplasma gondii in vitro. Int J Parasitol 10: 309–313.
[12]  Suss-Toby E, Zimmerberg J, Ward GE (1996) Toxoplasma invasion: the parasitophorous vacuole is formed from host cell plasma membrane and pinches off via a fission pore. Proc Natl Acad Sci U S A 93: 8413–8418.
[13]  Tonkin ML, Roques M, Lamarque MH, Pugniere M, Douguet D, et al. (2011) Host cell invasion by apicomplexan parasites: insights from the co-structure of AMA1 with a RON2 peptide. Science 333: 463–467.
[14]  Tyler JS, Treeck M, Boothroyd JC (2011) Focus on the ringleader: the role of AMA1 in apicomplexan invasion and replication. Trends Parasitol 27: 410–420.
[15]  Hehl AB, Lekutis C, Grigg ME, Bradley PJ, Dubremetz JF, et al. (2000) Toxoplasma gondii homologue of plasmodium apical membrane antigen 1 is involved in invasion of host cells. Infect Immun 68: 7078–7086.
[16]  Mital J, Meissner M, Soldati D, Ward GE (2005) Conditional expression of Toxoplasma gondii apical membrane antigen-1 (TgAMA1) demonstrates that TgAMA1 plays a critical role in host cell invasion. Mol Biol Cell 16: 4341–4349.
[17]  Lamarque M, Besteiro S, Papoin J, Roques M, Vulliez-Le Normand B, et al. (2011) The RON2-AMA1 interaction is a critical step in moving junction-dependent invasion by apicomplexan parasites. PLoS Pathog 7: e1001276.
[18]  Tyler JS, Boothroyd JC (2011) The C-terminus of Toxoplasma RON2 provides the crucial link between AMA1 and the host-associated invasion complex. PLoS Pathog 7: e1001282.
[19]  Treeck M, Tamborrini M, Daubenberger CA, Gilberger TW, Voss TS (2009) Caught in action: mechanistic insights into antibody-mediated inhibition of Plasmodium merozoite invasion. Trends in parasitology 25: 494–497.
[20]  Pizarro JC, Vulliez-Le Normand B, Chesne-Seck ML, Collins CR, Withers-Martinez C, et al. (2005) Crystal structure of the malaria vaccine candidate apical membrane antigen 1. Science 308: 408–411.
[21]  Dubey JP, Speer CA, Shen SK, Kwok OC, Blixt JA (1997) Oocyst-induced murine toxoplasmosis: life cycle, pathogenicity, and stage conversion in mice fed Toxoplasma gondii oocysts. J Parasitol 83: 870–882.
[22]  Tilley M, Fichera ME, Jerome ME, Roos DS, White MW (1997) Toxoplasma gondii sporozoites form a transient parasitophorous vacuole that is impermeable and contains only a subset of dense-granule proteins. Infect Immun 65: 4598–4605.
[23]  Fritz HM, Bowyer PW, Bogyo M, Conrad PA, Boothroyd JC (2012) Proteomic analysis of fractionated Toxoplasma oocysts reveals clues to their environmental resistance. PLoS One 7: e29955.
[24]  Fritz HM, Buchholz KR, Chen X, Durbin-Johnson B, Rocke DM, et al. (2012) Transcriptomic analysis of toxoplasma development reveals many novel functions and structures specific to sporozoites and oocysts. PLoS One 7: e29998.
[25]  Crawford J, Tonkin ML, Grujic O, Boulanger MJ (2010) Structural characterization of apical membrane antigen 1 (AMA1) from Toxoplasma gondii. J Biol Chem 285: 15644–15652.
[26]  Tonkin ML, Crawford J, Lebrun ML, Boulanger MJ (2013) Babesia divergens and Neospora caninum apical membrane antigen 1 structures reveal selectivity and plasticity in apicomplexan parasite host cell invasion. Protein Sci 22: 114–127.
[27]  Bai T, Becker M, Gupta A, Strike P, Murphy VJ, et al. (2005) Structure of AMA1 from Plasmodium falciparum reveals a clustering of polymorphisms that surround a conserved hydrophobic pocket. Proc Natl Acad Sci U S A 102: 12736–12741.
[28]  Vulliez-Le Normand B, Tonkin ML, Lamarque MH, Langer S, Hoos S, et al. (2012) Structural and functional insights into the malaria parasite moving junction complex. PLoS Pathog 8: e1002755.
[29]  Fauquenoy S, Morelle W, Hovasse A, Bednarczyk A, Slomianny C, et al. (2008) Proteomics and glycomics analyses of N-glycosylated structures involved in Toxoplasma gondii–host cell interactions. Mol Cell Proteomics 7: 891–910.
[30]  Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372: 774–797.
[31]  Bradley PJ, Ward C, Cheng SJ, Alexander DL, Coller S, et al. (2005) Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii. J Biol Chem 280: 34245–34258.
[32]  Brydges SD, Sherman GD, Nockemann S, Loyens A, Daubener W, et al. (2000) Molecular characterization of TgMIC5, a proteolytically processed antigen secreted from the micronemes of Toxoplasma gondii. Mol Biochem Parasitol 111: 51–66.
[33]  Hoff EF, Cook SH, Sherman GD, Harper JM, Ferguson DJ, et al. (2001) Toxoplasma gondii: molecular cloning and characterization of a novel 18-kDa secretory antigen, TgMIC10. Exp Parasitol 97: 77–88.
[34]  Hehl A, Krieger T, Boothroyd JC (1997) Identification and characterization of SRS1, a Toxoplasma gondii surface antigen upstream of and related to SAG1. Mol Biochem Parasitol 89: 271–282.
[35]  Srinivasan P, Beatty WL, Diouf A, Herrera R, Ambroggio X, et al. (2011) Binding of Plasmodium merozoite proteins RON2 and AMA1 triggers commitment to invasion. Proc Natl Acad Sci U S A 108: 13275–13280.
[36]  Hansson GC (2012) Role of mucus layers in gut infection and inflammation. Current opinion in microbiology 15: 57–62.
[37]  Camilleri M, Madsen K, Spiller R, Greenwood-Van Meerveld B, Verne GN (2012) Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society 24: 503–512.
[38]  Barragan A, Sibley LD (2002) Transepithelial migration of Toxoplasma gondii is linked to parasite motility and virulence. J Exp Med 195: 1625–1633.
[39]  Barragan A, Brossier F, Sibley LD (2005) Transepithelial migration of Toxoplasma gondii involves an interaction of intercellular adhesion molecule 1 (ICAM-1) with the parasite adhesin MIC2. Cell Microbiol 7: 561–568.
[40]  Speer CA, Tilley M, Temple ME, Blixt JA, Dubey JP, et al. (1995) Sporozoites of Toxoplasma gondii lack dense-granule protein GRA3 and form a unique parasitophorous vacuole. Mol Biochem Parasitol 75: 75–86.
[41]  Treeck M, Zacherl S, Herrmann S, Cabrera A, Kono M, et al. (2009) Functional analysis of the leading malaria vaccine candidate AMA-1 reveals an essential role for the cytoplasmic domain in the invasion process. PLoS Pathog 5: e1000322.
[42]  Donald RG, Carter D, Ullman B, Roos DS (1996) Insertional tagging, cloning, and expression of the Toxoplasma gondii hypoxanthine-xanthine-guanine phosphoribosyltransferase gene. Use as a selectable marker for stable transformation. The Journal of biological chemistry 271: 14010–14019.
[43]  Brymora A, Valova VA, Robinson PJ (2004) Protein-protein interactions identified by pull-down experiments and mass spectrometry. Current protocols in cell biology/editorial board, Juan S Bonifacino [et al] Chapter 17: Unit 17 15.
[44]  Garrison E, Treeck M, Ehret E, Butz H, Garbuz T, et al. (2012) A forward genetic screen reveals that calcium-dependent protein kinase 3 regulates egress in Toxoplasma. PLoS pathogens 8: e1003049.
[45]  Soldati D, Boothroyd JC (1993) Transient transfection and expression in the obligate intracellular parasite Toxoplasma gondii. Science 260: 349–352.
[46]  Donahue CG, Carruthers VB, Gilk SD, Ward GE (2000) The Toxoplasma homolog of Plasmodium apical membrane antigen-1 (AMA-1) is a microneme protein secreted in response to elevated intracellular calcium levels. Mol Biochem Parasitol 111: 15–30.
[47]  Battye TG, Kontogiannis L, Johnson O, Powell HR, Leslie AG (2011) iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr D Biol Crystallogr 67: 271–281.
[48]  Evans PR (2005) Scaling and assessment of data quality. Acta Cryst D: 72–82.
[49]  Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, et al. (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67: 235–242.
[50]  McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, et al. (2007) Phaser crystallographic software. J Appl Crystallogr 40: 658–674.
[51]  Schwarzenbacher R, Godzik A, Grzechnik SK, Jaroszewski L (2004) The importance of alignment accuracy for molecular replacement. Acta Cryst D60: 1229–1236.
[52]  Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallog sect D 60: 2126–2132.
[53]  Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallog sect D 53: 240–255.
[54]  Burg JL, Perelman D, Kasper LH, Ware PL, Boothroyd JC (1988) Molecular analysis of the gene encoding the major surface antigen of Toxoplasma gondii. J Immunol 141: 3584–3591.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133