全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Structural Integrity of the Greek Key Motif in βγ-Crystallins Is Vital for Central Eye Lens Transparency

DOI: 10.1371/journal.pone.0070336

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background We highlight an unrecognized physiological role for the Greek key motif, an evolutionarily conserved super-secondary structural topology of the βγ-crystallins. These proteins constitute the bulk of the human eye lens, packed at very high concentrations in a compact, globular, short-range order, generating transparency. Congenital cataract (affecting 400,000 newborns yearly worldwide), associated with 54 mutations in βγ-crystallins, occurs in two major phenotypes nuclear cataract, which blocks the central visual axis, hampering the development of the growing eye and demanding earliest intervention, and the milder peripheral progressive cataract where surgery can wait. In order to understand this phenotypic dichotomy at the molecular level, we have studied the structural and aggregation features of representative mutations. Methods Wild type and several representative mutant proteins were cloned, expressed and purified and their secondary and tertiary structural details, as well as structural stability, were compared in solution, using spectroscopy. Their tendencies to aggregate in vitro and in cellulo were also compared. In addition, we analyzed their structural differences by molecular modeling in silico. Results Based on their properties, mutants are seen to fall into two classes. Mutants A36P, L45PL54P, R140X, and G165fs display lowered solubility and structural stability, expose several buried residues to the surface, aggregate in vitro and in cellulo, and disturb/distort the Greek key motif. And they are associated with nuclear cataract. In contrast, mutants P24T and R77S, associated with peripheral cataract, behave quite similar to the wild type molecule, and do not affect the Greek key topology. Conclusion When a mutation distorts even one of the four Greek key motifs, the protein readily self-aggregates and precipitates, consistent with the phenotype of nuclear cataract, while mutations not affecting the motif display ‘native state aggregation’, leading to peripheral cataract, thus offering a protein structural rationale for the cataract phenotypic dichotomy “distort motif, lose central vision”.

References

[1]  Foster A, Gilbert C, Rahi J (1997) Epidemiology of cataract in childhood: a global perspective. J Cataract Refract Surg 23 Suppl 1601–604.
[2]  Shiels A, Bennett TM, Hejtmancik JF (2010) Cat-Map: putting cataract on the map. Mol Vis 16: 2007–2015.
[3]  Graw J (2009) Genetics of crystallins: cataract and beyond. Exp Eye Res 88: 173–189.
[4]  Shiels A, Hejtmancik JF (2007) Genetic origins of cataract. Arch Ophthalmol 125: 165–173.
[5]  Augusteyn RC (2010) On the growth and internal structure of the human lens. Exp Eye Res 90: 643–654.
[6]  McAvoy JW (1978) Cell division, cell elongation and distribution of alpha-, beta- and gamma-crystallins in the rat lens. J Embryol Exp Morphol 44: 149–165.
[7]  Wang X, Garcia CM, Shui YB, Beebe DC (2004) Expression and regulation of alpha-, beta-, and gamma-crystallins in mammalian lens epithelial cells. Invest Ophthalmol Vis Sci 45: 3608–3619.
[8]  Laganowsky A, Benesch JL, Landau M, Ding L, Sawaya MR, et al. (2010) Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function. Protein Sci 19: 1031–1043.
[9]  Augusteyn RC (2004) alpha-crystallin: a review of its structure and function. Clin Exp Optom 87: 356–366.
[10]  Singh D, Raman B, Ramakrishna T, Rao Ch M (2006) The cataract-causing mutation G98R in human alphaA-crystallin leads to folding defects and loss of chaperone activity. Mol Vis 12: 1372–1379.
[11]  Lapatto R, Nalini V, Bax B, Driessen H, Lindley PF, et al. (1991) High resolution structure of an oligomeric eye lens beta-crystallin. Loops, arches, linkers and interfaces in beta B2 dimer compared to a monomeric gamma-crystallin. J Mol Biol 222: 1067–1083.
[12]  Hutchinson EG, Thornton JM (1993) The Greek key motif: extraction, classification and analysis. Protein Eng 6: 233–245.
[13]  Wistow G, Wyatt K, David L, Gao C, Bateman O, et al. (2005) gammaN-crystallin and the evolution of the betagamma-crystallin superfamily in vertebrates. FEBS J 272: 2276–2291.
[14]  Amaya L, Taylor D, Russell-Eggitt I, Nischal KK, Lengyel D (2003) The morphology and natural history of childhood cataracts. Surv Ophthalmol 48: 125–144.
[15]  Krishnamurthy R, Vanderveen DK (2008) Infantile cataracts. Int Ophthalmol Clin 48: 175–192.
[16]  Lambert SR, Drack AV (1996) Infantile cataracts. Surv Ophthalmol 40: 427–458.
[17]  Putzar L, Hotting K, Roder B (2010) Early visual deprivation affects the development of face recognition and of audio-visual speech perception. Restor Neurol Neurosci 28: 251–257.
[18]  Birch EE, Cheng C, Stager DR Jr, Weakley DR Jr, Stager DR Sr (2009) The critical period for surgical treatment of dense congenital bilateral cataracts. J AAPOS 13: 67–71.
[19]  Kuhli-Hattenbach C, Luchtenberg M, Kohnen T, Hattenbach LO (2008) Risk factors for complications after congenital cataract surgery without intraocular lens implantation in the first 18 months of life. Am J Ophthalmol 146: 1–7.
[20]  Basak A, Bateman O, Slingsby C, Pande A, Asherie N, et al. (2003) High-resolution X-ray crystal structures of human gammaD crystallin (1.25 A) and the R58H mutant (1.15 A) associated with aculeiform cataract. J Mol Biol 328: 1137–1147.
[21]  Kosinski-Collins MS, King J (2003) In vitro unfolding, refolding, and polymerization of human gammaD crystallin, a protein involved in cataract formation. Protein Sci 12: 480–490.
[22]  Mills IA, Flaugh SL, Kosinski-Collins MS, King JA (2007) Folding and stability of the isolated Greek key domains of the long-lived human lens proteins gammaD-crystallin and gammaS-crystallin. Protein Sci 16: 2427–2444.
[23]  Das P, King JA, Zhou R (2009) beta-Strand interactions at the domain interface critical for the stability of human lens gammaD-crystallin. Protein Sci 19: 131–140.
[24]  Kong F, King J (2011) Contributions of aromatic pairs to the folding and stability of long-lived human gammaD-crystallin. Protein Sci 20: 513–528.
[25]  Stephan DA, Gillanders E, Vanderveen D, Freas-Lutz D, Wistow G, et al. (1999) Progressive juvenile-onset punctate cataracts caused by mutation of the gammaD-crystallin gene. Proc Natl Acad Sci U S A 96: 1008–1012.
[26]  Pande A, Gillot D, Pande J (2009) The cataract-associated R14C mutant of human gamma D-crystallin shows a variety of intermolecular disulfide cross-links: a Raman spectroscopic study. Biochemistry 48: 4937–4945.
[27]  Pande A, Zhang J, Banerjee PR, Puttamadappa SS, Shekhtman A, et al. (2009) NMR study of the cataract-linked P23T mutant of human gammaD-crystallin shows minor changes in hydrophobic patches that reflect its retrograde solubility. Biochem Biophys Res Commun 382: 196–199.
[28]  Pande A, Annunziata O, Asherie N, Ogun O, Benedek GB, et al. (2005) Decrease in protein solubility and cataract formation caused by the Pro23 to Thr mutation in human gamma D-crystallin. Biochemistry 44: 2491–2500.
[29]  Pande A, Ghosh KS, Banerjee PR, Pande J (2010) Increase in surface hydrophobicity of the cataract-associated P23T mutant of human gammaD-crystallin is responsible for its dramatically lower, retrograde solubility. Biochemistry 49: 6122–6129.
[30]  Banerjee PR, Puttamadappa SS, Pande A, Shekhtman A, Pande J (2011) Increased hydrophobicity and decreased backbone flexibility explain the lower solubility of a cataract-linked mutant of gammaD-crystallin. J Mol Biol 412: 647–659.
[31]  Jung J, Byeon IJ, Wang Y, King J, Gronenborn AM (2009) The structure of the cataract-causing P23T mutant of human gammaD-crystallin exhibits distinctive local conformational and dynamic changes. Biochemistry 48: 2597–2609.
[32]  Kmoch S, Brynda J, Asfaw B, Bezouska K, Novak P, et al. (2000) Link between a novel human gammaD-crystallin allele and a unique cataract phenotype explained by protein crystallography. Hum Mol Genet 9: 1779–1786.
[33]  Ji F, Jung J, Koharudin LM, Gronenborn AM (2012) The human W42R gammaD-crystallin mutant structure provides a link between congenital and age-related cataracts. J Biol Chem 288: 99–109.
[34]  Pande A, Pande J, Asherie N, Lomakin A, Ogun O, et al. (2001) Crystal cataracts: human genetic cataract caused by protein crystallization. Proc Natl Acad Sci U S A 98: 6116–6120.
[35]  Ji F, Jung J, Gronenborn AM (2012) Structural and biochemical characterization of the childhood cataract-associated R76S mutant of human gammaD-crystallin. Biochemistry 51: 2588–2596.
[36]  Vendra VP, Balasubramanian D (2010) Structural and aggregation behavior of the human gammaD-crystallin mutant E107A, associated with congenital nuclear cataract. Mol Vis 16: 2822–2828.
[37]  Banerjee PR, Pande A, Patrosz J, Thurston GM, Pande J (2010) Cataract-associated mutant E107A of human gammaD-crystallin shows increased attraction to alpha-crystallin and enhanced light scattering. Proc Natl Acad Sci U S A 108: 574–579.
[38]  Evans P, Wyatt K, Wistow GJ, Bateman OA, Wallace BA, et al. (2004) The P23T cataract mutation causes loss of solubility of folded gammaD-crystallin. J Mol Biol 343: 435–444.
[39]  Talla V, Srinivasan N, Balasubramanian D (2008) Visualization of in situ intracellular aggregation of two cataract-associated human gamma-crystallin mutants: lose a tail, lose transparency. Invest Ophthalmol Vis Sci 49: 3483–3490.
[40]  Augusteyn RC, Chandrasekher G, Ghiggino KP, Vassett P (1994) Probing the microenvironments of tryptophan residues in the monomeric crystallins of the bovine lens. Biochim Biophys Acta 1205: 89–96.
[41]  Rosen CG, Weber G (1969) Dimer formation from 1-amino-8-naphthalenesulfonate catalyzed by bovine serum albumin. A new fluorescent molecule with exceptional binding properties. Biochemistry 8: 3915–3920.
[42]  Sutter M, Oliveira S, Sanders NN, Lucas B, van Hoek A, et al. (2007) Sensitive spectroscopic detection of large and denatured protein aggregates in solution by use of the fluorescent dye Nile red. J Fluoresc 17: 181–192.
[43]  Sahin E, Jordan JL, Spatara ML, Naranjo A, Costanzo JA, et al. (2010) Computational design and biophysical characterization of aggregation-resistant point mutations for gammaD crystallin illustrate a balance of conformational stability and intrinsic aggregation propensity. Biochemistry 50: 628–639.
[44]  Greene RF Jr, Pace CN (1974) Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, alpha-chymotrypsin, and beta-lactoglobulin. J Biol Chem 249: 5388–5393.
[45]  Clark AC, Sinclair JF, Baldwin TO (1993) Folding of bacterial luciferase involves a non-native heterodimeric intermediate in equilibrium with the native enzyme and the unfolded subunits. J Biol Chem 268: 10773–10779.
[46]  Ma Z, Piszczek G, Wingfield PT, Sergeev YV, Hejtmancik JF (2009) The G18V CRYGS mutation associated with human cataracts increases gammaS-crystallin sensitivity to thermal and chemical stress. Biochemistry 48: 7334–7341.
[47]  Brubaker WD, Freites JA, Golchert KJ, Shapiro RA, Morikis V, et al. (2011) Separating instability from aggregation propensity in gammaS-crystallin variants. Biophys J 100: 498–506.
[48]  Vendra VP, Chandani S, Balasubramanian D (2012) The mutation V42M distorts the compact packing of the human gamma-S-crystallin molecule, resulting in congenital cataract. PLoS One 7: e51401.
[49]  Ecroyd H, Carver JA (2009) Crystallin proteins and amyloid fibrils. Cell Mol Life Sci 66: 62–81.
[50]  Sandilands A, Hutcheson AM, Long HA, Prescott AR, Vrensen G, et al. (2002) Altered aggregation properties of mutant gamma-crystallins cause inherited cataract. EMBO J 21: 6005–6014.
[51]  Papanikolopoulou K, Mills-Henry I, Thol SL, Wang Y, Gross AA, et al. (2008) Formation of amyloid fibrils in vitro by human gammaD-crystallin and its isolated domains. Mol Vis 14: 81–89.
[52]  Naiki H, Higuchi K, Hosokawa M, Takeda T (1989) Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavin T1. Anal Biochem 177: 244–249.
[53]  Evans P, Wyatt K, Wistow GJ, Bateman OA, Wallace BA, et al. (2004) The P23T cataract mutation causes loss of solubility of folded gammaD-crystallin. J Mol Biol 343: 435–444.
[54]  Hubbard SJ, Thornton JM (1993) NACCESS, Department of Biochemistry and Molecular Biology, University College London, London, UK.
[55]  DeLano WL (2002) The PyMOL Molecular Graphics System. Available: http://www.pymol.org. Accessed: 12 November 2013.
[56]  Graw J (2009) Mouse models of cataract. J Genet 88: 469–486.
[57]  Pande J (2011) Lecture at the annual meeting of the Association for Research in Vision and Ophthalmology (ARVO), Session 102, Ft. Lauderdale, FL, USA.
[58]  Benedek GB (1997) Cataract as a protein condensation disease: the Proctor Lecture. Invest Ophthalmol Vis Sci 38: 1911–1921.
[59]  Gunton JD Shiryayev A, Pagan DL (2007) Protein condensation: kinetic pathways to crystallization and disease. Cambridge University Press, New York.
[60]  Jaenicke R, Slingsby C (2001) Lens crystallins and their microbial homologs: structure, stability, and function. Crit Rev Biochem Mol Biol 36: 435–499.
[61]  Delaye M, Tardieu A (1983) Short-range order of crystallin proteins accounts for eye lens transparency. Nature 302: 415–417.
[62]  Andley UP, Rhim JS, Chylack LT Jr, Fleming TP (1994) Propagation and immortalization of human lens epithelial cells in culture. Invest Ophthalmol Vis Sci 35: 3094–3102.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133