全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Short-Chain Fructo-Oligosaccharides Modulate Intestinal Microbiota and Metabolic Parameters of Humanized Gnotobiotic Diet Induced Obesity Mice

DOI: 10.1371/journal.pone.0071026

Full-Text   Cite this paper   Add to My Lib

Abstract:

Prebiotic fibres like short-chain fructo-oligosaccharides (scFOS) are known to selectively modulate the composition of the intestinal microbiota and especially to stimulate Bifidobacteria. In parallel, the involvement of intestinal microbiota in host metabolic regulation has been recently highlighted. The objective of the study was to evaluate the effect of scFOS on the composition of the faecal microbiota and on metabolic parameters in an animal model of diet-induced obesity harbouring a human-type microbiota. Forty eight axenic C57BL/6J mice were inoculated with a sample of faecal human microbiota and randomly assigned to one of 3 diets for 7 weeks: a control diet, a high fat diet (HF, 60% of energy derived from fat)) or an isocaloric HF diet containing 10% of scFOS (HF-scFOS). Mice fed with the two HF gained at least 21% more weight than mice from the control group. Addition of scFOS partially abolished the deposition of fat mass but significantly increased the weight of the caecum. The analysis of the taxonomic composition of the faecal microbiota by FISH technique revealed that the addition of scFOS induced a significant increase of faecal Bifidobacteria and the Clostridium coccoides group whereas it decreased the Clostridium leptum group. In addition to modifying the composition of the faecal microbiota, scFOS most prominently affected the faecal metabolome (e.g. bile acids derivatives, hydroxyl monoenoic fatty acids) as well as urine, plasma hydrophilic and plasma lipid metabolomes. The increase in C. coccoides and the decrease in C. leptum, were highly correlated to these metabolic changes, including insulinaemia, as well as to the weight of the caecum (empty and full) but not the increase in Bifidobacteria. In conclusion scFOS induce profound metabolic changes by modulating the composition and the activity of the intestinal microbiota, that may partly explain their effect on the reduction of insulinaemia.

References

[1]  Chen L, Magliano DJ, Zimmet PZ (2012) The worldwide epidemiology of type 2 diabetes mellitus - present and future perspectives. Nat. Rev. Endocrinol. 8: 228–236.
[2]  Murakami K, Okubo H, Sasaki S (2005) Effects of dietary factors on incidence of type 2 diabetes: a systematic review of cohort studies. J. Nutr. Sci. Vitaminol. 51: 292–310.
[3]  Post RE, Mainous AG, King DE, Simpson KN (2012) Dietary fiber for the treatment of type 2 diabetes mellitus: a meta-analysis. J. Am. Board Fam. Med. 25: 16–23.
[4]  Rabot S, Membrez M, Bruneau A, Gérard P, Harach T, et al. (2010) Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB J. 24 10 (1096): fj.10–164921.
[5]  Robertson MD (2007) Metabolic cross talk between the colon and the periphery: implications for insulin sensitivity. Proc. Nutr. Soc. 66: 351–361.
[6]  Fearnside J, Dumas M-E, Rothwell AR, Wilder SP, Cloared O (2008) Phylometabonomic patterns of adaptation to high fat diet feeding in inbred mice. PloS One 3: e1668.
[7]  Gibson GR, Probert H, van Loo J, Rastall RA, Roberfroid MB (2004) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr. Res. Rev. 17: 259–275.
[8]  Bouhnik Y, Raskine L, Simoneau G, Vicaut E, Neut C, et al. (2004) The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: a double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study. Am J Clin Nutr 80: 1658–1664.
[9]  Roberfroid MB, Gibson GR, Hoyles L, McCartney AL, Rastall RA, et al.. (2010) Prebiotic effects: metabolic and health benefits. Brit. J. Nutr. 104.
[10]  Saulnier DMA, Gibson GR, Kolida S (2008) In vitro effects of selected synbiotics on the human faecal microbiota composition. FEMS Microbiol Ecol 66: 516–527.
[11]  Hold GL, Schwiertz A, Aminov RI, Blaut M, Flint HJ (2003) Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human feces. Appl. Environ. Microbiol. 69: 4320–4324.
[12]  Le Blay G, Michel C, Blottière HM, Cherbut C (1999) Prolonged intake of fructo-oligosaccharides induces a short-term elevation of lactic acid-producing bacteria and a persistent increase in caecal butyrate in rats. J. Nutr. 129: 2231–2235.
[13]  Boutron-Ruault MC, Marteau P, Lavergne-Slove A, Myara A, Gerhardt MF, et al. (2005) Effects of a 3-mo consumption of short-chain fructo-oligosaccharides on parameters of colorectal carcinogenesis in patients with or without small large colorectal adenomas. Nutr. Canc. 53: 160–168.
[14]  Van den Abbeele P, Gerard P, Rabot S, Bruneau A, El Aidy S, et al.. (2011) Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucin-degradation in humanized rats. Environm. Microbiol.: :doi–10.111/j.1462–2920.2011.02533.x.
[15]  Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, et al. (2009) Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Brit. J. Nutr. 101: 541–550.
[16]  Bonsu NKA, Johnson CS, McLeod KM (2011) Can dietary fructans lower serum glucose? J. Diabetes 3: 58–66.
[17]  Respondek F, Swanson KS, Belsito K, Vester B, Wagner A, et al. (2008) Short-chain Fructooligosaccharides influence insulin sensitivity and gene expression of fat tissue in obese dogs. J Nutr 138: 1712–1718.
[18]  Respondek F, Myers K, Smith TL, Wagner A, Geor RJ (2011) Dietary supplementation with short-chain fructo-oligosaccharides improves insulin sensitivity in obese horses. J. Anim. Sci. 89: 77–83.
[19]  Gerard P, Beguet F, Lepercq P, Rigottier-Gois L, Rochet V, et al. (2004) Gnotobiotic rats harboring human intestinal microbiota as a model for studying cholesterol-to-coprostanol conversion. FEMS Microbiol. Ecol. 47: 337–343.
[20]  Hirayama K, Itoh K (2005) Human flora-associated (HFA) animals as a model for studying the role of intestinal flora in human health and disease. Curr. Issues Intestinal Microbiol. 6: 69–75.
[21]  Sorhede Winzel M, Ahren B (2004) The high fat diet fed mouse: A model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 53: S215–S219.
[22]  Gerard P, Brezillon C, Quere F, Salmon A, Rabot S (2008) Characterization of cecal microbiota and response to an orally administered lactobacillus probiotic strain in the broiler chicken. J. Mol. Microbiol. Biotechnol. 14: 115–122.
[23]  Caraux G, Pinloche S (2005) Permumatrix: a graphical environment to arrange gene expression profiles in optimal linear order. Bioinformatics 21: 1280–1281.
[24]  Jansson J, Willing B, Lucio M, Fekete A, Dicksved J, et al. (2009) Metabolomic reveals metabolic biomarkers of Crohns’ disease. Plos ONE 4: e6386.
[25]  Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) Xcmw: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching and identification. Anal. Chem. 78: 779–787.
[26]  Grison S, Martin JC, Grandolas L, Banzet N, Blanchardon E, et al. (2012) The metabolomic approach identifies a biological signature of low-dose chronic exposure to cesium 137. J. Radiat. Res. 53: 33–43.
[27]  Draper J, Enot DP, Parker D, Beckmann M, Snowdon S, et al. (2009) Metabolite signal identification in accurate mass metabolomics data with mzeddb, an interactive m/z annotation tool utilising predicted ionisation behaviour ‘rules’. BMC Bioinfo. 10: 227.
[28]  Summer LW (2007) Proposed minimum reporting standards for chemical analysis. Metabolomics 3: 211–221.
[29]  Martin JC (2009) (1)H-NMR metabonomics can differentiante the early atherogenic effect of diary products in hyperlipidemic hamsters. Atherosclerosis 206: 127–133.
[30]  Thabuis C, Destaillats F, Lambert DM, Muccioli GG, Maillot M, et al. (2011) Lipid transport function is the main target of oral oleylethanolamide to reduce adiposity in high-fat fed mice. J. Lipid Res. 52: 1373–1382.
[31]  Eriksson K, Johansson E, Kettaneh-Wold N, Trygg J, Wikstr?m C, et al.. (2006) Multi- and megavariate analysis: Part 1: Basic principles and applications. Umetrics AB. p. 419.
[32]  Shannon P (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genom. Res. 13: 2498–2504.
[33]  Weickert MO, Arafat AM, Blaut M, Alpert C, Becker N, et al. (2011) Changes in dominant groups of the gut microbiota do not explain cereal-fiber induced improvement of whole-body insulin sensitivity. Nutr. Metabol. 8: 90.
[34]  Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, et al.. (2010) Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J.
[35]  Lam YY, Ha CWY, Campbell CR, Mitchell AJ, Dinudom A, et al. (2012) Increased gut permeability and microbiota change associate with mesnteric fat inflammation and metabolis dysfunction in diet-induced obese mice. PlosOne 7: e34233.
[36]  Neyrinck AM, Possemiers S, Verstraete W, De Backer F, Cani PD, et al. (2012) Dietary modulation of clostridial cluster XIVa gut bacteria (Roseburia spp) by chitin-glucan fiber improves host metabolis alterations induced by high-fat diet in mice. J. Nutr. Biochem. 23: 51–59.
[37]  Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, et al.. (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med.: 6ra14.
[38]  Pyra KA, Saha DC, Reimer RA (2012) Prebiotic fiber increases hepatic acetyl CoA carboxylase phosphorylation and suppresses glucose-dependent insulinotropic polypeptide secretion more effectively when used with metformin in obese rats. J. Nutr. 142: 213–220.
[39]  Parnell JA, Reimer RA (2012) Prebiotic fibres dose-dependently increase satiety hormones and aletr Bacteroidetes and Firmicutes in lean and obses JCR:LA-cp rats. Br J Nutr 107: 601–613.
[40]  Gourgue-Jeannot C, Kalmokoff ML, Kheradpir E, Kwan J, Lampi BJ, et al. (2006) Dietary fructooligosaccharides alter the cultivable faecal population of rats but do not stimulate the growth of intestinal bifidobacteria. Can J Microbiol 52: 924–33.
[41]  Hoskins LC, Agustines M, McKee WB, Boulding ET, Kriaris M, et al. (1985) Mucin degradation in human colon ecosystems. Isolation and properties of fecal strains that degrade ABH blood group antigens and oligossaccharides from mucin glycoproteins. J. Clin. Invest. 84: 944–953.
[42]  Lozupone C, Faust K, Raes J, Faith JJ, Frank DN, et al.. (2012) Identifying genomic and metabolic features that can underlie early successional and opportunistic lifestyles of human gut symbionts. Genome Res. Epub ahead of print.
[43]  Taras D, Simmering R, Collins MD, Lawson PA, Blaut M (2002) Reclassification of Eubacterium formicigenerans Holdeman and Moore 1974 as Dorea formicigenerans gen. nov., com. nov., and description of Dorea longicatena sp. nov., isolated from human faeces. Int. J. Syst. Evolution. Microbiol. 52: 423–428.
[44]  Tap J, Mondot S, Levenez F, Pelletier E, Caron C, et al. (2009) Towards the human intestinal microbiota phylogenetic core. Environ. Microbiol. 11: 2574–2584.
[45]  Serino (2012) Metabolic adaptation to high-fat diet is associated with change in the gut microbiota. Gut 61: 543–553.
[46]  Ravussin Y, Koren O, Spor A, LeDuc C, Gutman R, et al.. (2011) Responses of gut microbiota to diet composition and weight loss in lean and obese mice. Obesity: doi: 10.1038.
[47]  Leibowitz SF, Chang GQ, Dourmashkin JT, Yun R, Julien C, et al. (2006) Leptin secretion after a high-fat meal in normal-weight rats: strong predictor of long term body fat accrual on a high-fat diet. Am. J. Physiol. Endocrinol. Metab. 290: E258–267.
[48]  Poppitt SD, Leahy FE, Keogh GF, Wang Y, Mulvey TB, et al. (2006) Effect of high-fat meals and fatty acids saturation on postprandial levels of the hormones ghrelin and leptin in healthy men. Eur. J. Clin. Nutr. 60: 77–84.
[49]  Ishioka K, Hatai H, Komabayashi K, Soliman MM, Shibata H, et al. (2005) Diurnal variations of serum leptin in dogs: effects of fasting and re-feeding. Vet. J. 169: 85–90.
[50]  Weickert MO, Mohlig M, Koebnick C, Holst JJ, Namsolleck P, et al. (2005) Impact of cereal fibre on glucose-regulating factors. Diabetol. 48: 2343–2353.
[51]  Wang J, Obici S, Morgan K, Barzilai N, Feng Z, et al. (2001) Overfeeding rapidly induces leptin and insulin resistance. Diabetes 50: 2786–2791.
[52]  Busserolles J, Gueux E, Rock E, Demigne C, Mazur A, et al. (2003) Oligofructose Protects against the Hypertriglyceridemic and Pro-oxidative Effects of a High Fructose Diet in Rats. J. Nutr. 133: 1903–1908.
[53]  Sugatani J, Osabe M, Wada T, Yamakawa K, Yamazaki Y, et al. (2008) Comparison of enzymatically synthesized inulin, resistant maltodextrin and clofibrate effects on biomarkers of metabolic disease in rats fed a high-fat and high-sucrose (cafetaria diet). Eur. J. Nutr. 47: 192–200.
[54]  Shinoki A, Hara H (2011) Dietary fructo-oligosaccharides improve insulin sensitivity along with the suppression of adipocytes secretion from mesenteric fat cells in rats. Br J Nutr 106: 1190–1197.
[55]  Xiong Y, Miyamoto N, Shibata K, Valasek MA, Motoike T, et al. (2004) Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. PNAS 101: 1045–1050.
[56]  Martin FP, Wang Y, Sprenger N, Yap IK, Rezzi S, et al. (2008) Top-down systems biology integration of conditional prebiotic modulated transgenomic interactions in a humanized microbiome mouse model. Mol. Syst. Biol. 4: 205.
[57]  Dewulf EM, Cani PD, Claus SP, Fuentes S, Puylaert PGB, et al.. (2012) Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Epub ahead of print.
[58]  Larsen N, Vogensen FK, van den Berg FWJ, Nielsen DS, Andreasen AS, et al. (2010) Gut microbiota in Human adults with type 2 diabetes differs from non-diabetic adults. PLoSONE 5: e9085.
[59]  Ogawa J, Kishino S, Ando A, Sugimoto S, Mihara K, et al. (2005) Production of conjugated fatty acids by lactic acid bacteria. J. Biosc. Bioeng. 100: 355–364.
[60]  Fukusawa T, Kamei A, Watanabe Y, Koga J, Abe K (2010) Short-chain fructo-oligosaccharide regulates hepatic peroxisome proliferator-activated receptor a and farnesoid X receptor target gene expression in rats. J. Agric. Food Chem. 58: 7007–7012.
[61]  Suhre K, Meisinger C, D?ring A, Altmaier E, Belcredi P, et al. (2010) Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. Plos ONE 5: e138953.
[62]  Steiner C, Othman A, Saely CH, Rein P, Drexel H, et al. (2011) Bile acid metabolites in serum: intraindividual variation and associations with coronary heart dises, metabolic syndrome and diabetes mellitus. Plos ONE 6: e25006.
[63]  Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B (2009) Role of bile acids and bile acid receptors in metabolic regulation. Physiol. Rev. 89: 147–191.
[64]  Cariou B, van Harmelen K, Duran-Sandoval D, van Dijk TH, Grefhorst A, et al. (2006) The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J. Biol. Chem. 281: 11039–11049.
[65]  Pearson JR, Wiggins HS, Drasar BS (1974) Conversion of long-chain unsaturated fatty acids to hydroxy acids by human intestinal bacteria. J. Med. Microbiol. 7: 265–275.
[66]  Osipov GA, Boiko NB, Fedosova NF, Kasikhina SA, Lyadov KV (2009) Comparative gas chromatography-mass spectrometry study of the composition of microbial chemical markers in feces. Microbial. Ecol. Health Dis. 21: 159–171.
[67]  Hou CT (2008) New bioactive fatty acids. Asia Pac. J. Clin. Nutr. 17: 192–195.
[68]  Tunaru S, Althoff TF, Nüsing RM, Diener M, Offermanns S (2012) Castor oil induces laxation and uterus contraction via ricinoleic acid activating prostaglandin EP3 receptors. Proc. Natl. Acad. Sci. USA 109: 9179–9184.
[69]  Sumner LW, Amberg A, Barrett A, Beale MH, Beger R, et al. (2007) Proposed minimum reporting standards for chemical analysis. Chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics 3: 211–221.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133