We report the monolithic integration, fabrication, and electrooptical properties of AlGaAs-GaAs-based transceiver (TRx) chips for 850?nm wavelength optical links with data rates of multiple Gbit/s. Using a single butt-coupled multimode fiber (MMF), low-cost bidirectional communication in half- and even full-duplex mode is demonstrated. Two design concepts are presented, based on a vertical-cavity surface-emitting laser (VCSEL) and a monolithically integrated p-doped-intrinsic-n-doped (PIN) or metal-semiconductor-metal (MSM) photodetector. Whereas the VCSEL-PIN photodiode (PD) chips are used for high-speed bidirectional data transmission over 62.5 and 50?μm core diameter MMFs, MSM TRx chips are employed for 100 or 200?μm large-area fibers. Such a monolithic transceiver design based on a well-established material system and avoiding the use of external fiber coupling optics is well suited for inexpensive and compact optical interconnects over distances of a few hundred meters. Standard MMF networks can thus be upgraded using high-speed VCSEL-PIN transceiver chips which are capable to handle data rates of up to 10?Gbit/s. 1. Introduction Over the last decades, the well-known AlGaAs-GaAs mixed compound semiconductor material system paved the way for the tremendous development of vertical-cavity surface-emitting lasers (VCSELs) as excellent light sources. Their inherent property of light emission perpendicular to the wafer surface and therefore the ability of fabrication in densely packed two-dimensional arrays make VCSELs distinguished inexpensive candidates for many applications [1]. Further advances in VCSEL technology have enabled higher chip functionalities such as monolithic integration with photodiodes. Such a device combination can be used for monitoring the laser output power [2], for realizing an ultracompact laser self-mixing interference sensor [3], or for biomedical fluorescence sensing [4]. Favorable properties like low threshold currents and operating voltages, circular beam profiles and high modulation bandwidths are ideal for VCSEL use in optical communications [1]. In contrast to conventional interconnections with one MMF per transmission direction, one could potentially lower the link cost, weight, and size by employing a single optical fiber, as presented in [5]. Here, the VCSEL is used as a dual-purpose device, namely, an efficient laser source and a resonant-cavity-enhanced avalanche photodetector. Since it is switched between two operation modes, only half-duplex operation at 1.25?Gbit/s data rate over a 50?μm core diameter MMF with
References
[1]
R. Michalzik, Ed., VCSELs—Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers, vol. 166 of Springer Series in Optical Sciences, Springer, Berlin, Germany, 2012.
[2]
K. D. Choquette, R. P. Schneider Jr., K. L. Lear, and K. M. Geib, “Monolithic integration of photodetector with vertical cavity surface emitting laser,” Electronics Letters, vol. 27, no. 18, pp. 1630–1632, 1991.
[3]
A. Pruijmboom, M. Schemmann, J. Hellmig, J. Schutte, H. Moench, and J. Pankert, “VCSEL-based miniature laser-Doppler interferometer,” in Vertical-Cavity Surface-Emitting Lasers XII, C. Lei and J. K. Guenter, Eds., vol. 6908 of Proceedings of SPIE, pp. 1–7, San Jose, Calif, USA, January 2008.
[4]
E. Thrush, O. Levi, W. Ha et al., “Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing,” IEEE Journal of Quantum Electronics, vol. 40, no. 5, pp. 491–498, 2004.
[5]
J. D. Ingham, R. V. Penty, and I. H. White, “Bidirectional multimode-fiber communication links using dual-purpose vertical-cavity devices,” Journal of Lightwave Technology, vol. 24, no. 3, pp. 1283–1294, 2006.
[6]
O. Sj?lund, D. A. Louderback, E. R. Hegblom, J. Ko, and L. A. Coldren, “Individually optimized bottom-emitting vertical-cavity lasers and bottom-illuminated resonant photodetectors sharing the same epitaxial structure,” Journal of Optics A: Pure and Applied Optics, vol. 1, no. 2, pp. 317–319, 1999.
[7]
P. Kazlas, J. Wasserbauer, J. Scott, D. Paananen, S. Swirhun, and D. Lewis, “Monolithic vertical-cavity laser/p-i-n photodiode transceiver array for optical interconnects,” IEEE Photonics Technology Letters, vol. 10, no. 11, pp. 1530–1532, 1998.
[8]
A. M. Kasten, A. V. Giannopoulos, C. Long, C. Chen, and K. D. Choquette, “Fabrication and characterization of individually addressable vertical-cavity surface-emitting laser arrays and integrated VCSEL/PIN detector arrays,” in Vertical Cavity Surface Emitting Lasers XI, K. D. Choquette and J. K. Guenter, Eds., vol. 6484 of Proceedings of SPIE, pp. 1–6, San Jose, Calif, USA, 2007.
[9]
M. Stach, F. Rinaldi, D. Wahl, D. Rimpf, S. Lorch, and R. Michalzik, “1?Gbit/s full-duplex bidirectional optical data transmission over 500?m of 50?μm-core graded-index multimode fiber with novel monolithically integrated transceiver chips,” in Proceedings of the 33rd European Conference on Optical Communication (ECOC '07), vol. 5, pp. 127–128, Berlin, Germany, 2007.
[10]
M. Stach, L. St?ferle, F. Rinaldi, and R. Michalzik, “Monolithically integrated optical transceiver chips at 850?nm wavelength consisting of VCSELs and MSM photodiodes,” in Proceedings of the Lasers and Electro-Optics Europe, (CLEO/Europe '05), CI2-4-THU, p. 1, Munich, Germany, June 2005.
[11]
M. Stach, L. St?ferle, F. Rinaldi, and R. Michalzik, “3?Gbit/s data transmission with monolithically integrated optical transceiver chips for very short reach applications,” in Proceedings of the 31st European Conference on Optical Communication (ECOC '05), vol. 3, pp. 529–530, Glasgow, UK, 2005.
[12]
M. Stach, M. Chandran, and F. Rinaldi, “Monolithically integrated transceiver chips for bidirectional optical interconnection,” in Micro-Optics, VCSELs, and Photonic Interconnects II: Fabrication, Packaging, and Integration, vol. 6185 of Proceedings of SPIE, Strasbourg, France, 2006.
[13]
M. Stach, F. Rinaldi, M. Chandran, S. Lorch, and R. Michalzik, “Monolithically integrated GaAs-based transceiver chips for bidirectional optical data transmission,” Electronics Letters, vol. 42, no. 12, pp. 716–718, 2006.
[14]
M. Stach, F. Rinaldi, M. Chandran, S. Lorch, and R. Michalzik, “Bidirectional optical interconnection at Gb/s data rates with monolithically integrated VCSEL-MSM transceiver chips,” IEEE Photonics Technology Letters, vol. 18, no. 22, pp. 2386–2388, 2006.
[15]
M. Stach, F. Rinaldi, A. Gadallah, et al., “1?Gbit/s bidirectional data transmission over 100?m graded-index glass optical fiber with monolithically integrated transceiver chips,” in Proceedings of the European Conference on Optical Communication (ECOC '06), vol. 3, pp. 493–494, Cannes, France, 2006.
[16]
R. Michalzik, M. Stach, F. Rinaldi, and S. Lorch, “Monolithic integration of VCSELs and MSM photodiodes for bidirectional multimode fiber communications,” in Vertical-Cavity Surface-Emitting Lasers XI, K. D. Choquette and J. K. Guenter, Eds., vol. 6484 of Proceedings of SPIE, pp. 1–10, San Jose, Calif, USA, 2007.
[17]
M. Stach, F. Rinaldi, J. Scharpf, S. Lorch, and R. Michalzik, “1?Gbit/s bidirectional optical data transmission over 50m semi-GI PCS fiber with monolithically integrated transceiver chips,” in Proceedings of the EOS Conference on Trends in Optoelectronics, Sub-conference on Information and Communication, pp. 61–62, Munich, Germany, 2007.
[18]
M. Stach, F. Rinaldi, D. Wahl, D. Rimpf, S. Lorch, and R. Michalzik, “Monolithically integrated miniaturized transceiver chips for bidirectional graded-index fiber systems,” in Proceedings of the 14th ITG Symposium on Communication Cable Networks, vol. 204 of ITG-Fachbericht Kommunikations-kabelnetze, pp. 115–119, K?ln, Germany, 2007.
[19]
J. B. D. Soole and H. Schumacher, “InGaAs metal-semiconductor-metal photodetectors for long wavelength optical communications,” IEEE Journal of Quantum Electronics, vol. 27, no. 3, pp. 737–752, 1991.
[20]
A. Kern, D. Wahl, S. Paul, et al., “Up to 9?Gbit/s data transmission with monolithically integrated VCSELs and PIN photodiodes,” in Proceedings of the Conference on Lasers and Electro-Optics Europe, (CLEO/Europe '11), CB1.4, p. 1, Munich, Germany, May 2011.
[21]
R. Michalzik, A. Kern, M. Stach, F. Rinaldi, and D. Wahl, “True bidirectional optical interconnects over multimode fiber,” in Optoelectronic Interconnects and Component Integration IX, A. L. Glebov and R. T. Chen, Eds., vol. 7607 of Proceedings of SPIE, pp. 1–17, San Francisco, Calif, USA, 2010.
[22]
A. Kern, D. Wahl, and M. T. Haidar, “Monolithic integration of VCSELs and PIN photodiodes for bidirectional data communication over standard multimode fibers,” in Semiconductor Lasers and Laser Dynamics IV, K. P. Panayotov, M. Sciamanna, A. A. Valle, and R. Michalzik, Eds., vol. 7720 of Proceedings of SPIE, pp. 1–9, Brussels, Belgium, 2010.
[23]
D. Wahl, A. Kern, M. Stach, F. Rinaldi, R. R?sch, and R. Michalzik, “VCSELs with monolithically integrated photodiodes for single-fiber bidirectional data transmission in the Gbit/s range,” Journal of Crystal Growth, vol. 323, no. 1, pp. 438–441, 2011.
[24]
A. Kern, S. Paul, W. Schwarz, D. Wahl, R. Blood, and R. Michalzik, “Bidirectional multimode fiber interconnection at Gb/s data rates with monolithically integrated VCSEL-PIN transceiver chips,” IEEE Photonics Technology Letters, vol. 23, no. 15, pp. 1058–1060, 2011.
[25]
S. Salimian and C. B. Cooper III, “Selective dry etching of GaAs over AlGaAs in SF6/SiCl4 mixtures,” Journal of Vacuum Science and Technology B, vol. 6, pp. 1641–1644, 1988.
[26]
J.-H. Kim, D. H. Lim, and G. M. Yang, “Selective etching of AlGaAs/GaAs structures using the solutions of citric acid/H2O2 and de-ionized H2O/buffered oxide etch,” Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, vol. 16, no. 2, pp. 558–560, 1998.
[27]
K. D. Choquette, R. P. Schneider, K. L. Lear, and K. M. Geib, “Low threshold voltage vertical-cavity lasers fabricated by selective oxidation,” Electronics Letters, vol. 30, no. 24, pp. 2043–2044, 1994.
[28]
A. Kern, S. Paul, and D. Wahl, “6?Gbit/s full-duplex multimode fiber link with monolithic VCSEL–PIN transceiver chips,” in Proceedings of the 37th European Conference on Optical Communication, (ECOC '11), p. 3, Geneva, Switzerland, 2011.
[29]
A. Kern, D. Wahl, S. Paul, et al., “7?Gbit/s data transmission over 500?m multimode fiber with monolithically integrated bidirectional VCSEL-based transceiver chips,” in Proceedings of the Conference on Lasers and Electro-Optics, (CLEO '11), Baltimore, MD, USA, May 2011.