全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Remote Colorimetric and Structural Diagnosis by RGB-ITR Color Laser Scanner Prototype

DOI: 10.1155/2012/512902

Full-Text   Cite this paper   Add to My Lib

Abstract:

Since several years ENEA's Artificial Vision laboratory is involved in electrooptics systems development. In the last period the efforts are concentrated on cultural heritage remote diagnosis, trying to develop instruments suitable for multiple purposes concerning restoration, cataloguing, and education. Since last five years a new 3D (three-dimensional) laser scanner prototype (RGB-ITR) based on three amplitude-modulated monochromatic laser sources mixed together by dichroic filters is under development. Five pieces of information per each sampled point (pixel) are collected by three avalanche photodiodes and dedicated electronics: two distances and three target reflectivity signals for each channel, red, green, and blue. The combination of these pieces of information opens new scenarios for remote colorimetry allowing diagnoses without the use of scaffolds. Results concerning the use of RGB-ITR as colorimeter are presented. 1. Introduction One of the biggest problems concerning cultural heritage environment is the study and then the reproduction of pigment color. This difficulty is mainly caused by the tendency to consider the color almost exclusively as subject of visual perception and individual sensibility. It is important to underline that the color is also a physical propriety of the object itself and not only an observer experience that can be measured [1] yet in a nontrivial way. The first work of colorimetry applied to cultural heritage field was in 1953 by Istituto Centrale per il Restauro di Roma for a preliminary study on the restoration of “Maestà” by Duccio di Boninsegna [2]. After that, 40 years elapsed before colorimetry found new applications in this field, mainly in Italy [3]. This is also the consequence of finding in commerce tested and optimized electronic instruments which are mainly developed for industrial inspection. The migration of this type of instruments, suitable for the measure of uniform colored surfaces, in cultural heritage environment is limited by the complexity and continuous variation of polychromatic surfaces. For this reason it is important to have a colorimeter, which is able to measure very small areas better if punctual. Traditional colorimeters [4] work in a very closed range, 0–30?cm, which can be acceptable for canvas or small frescos placed at few meters. For investigating large surfaces in a range of several meters, that is, painted chapels, commercial colorimeters are time-consuming systems and the use of scaffolds is necessary. For all these reasons a remote and punctual system is desirable, but a new

References

[1]  C. Oleari, Misurare il Colore, Ulrico Hoepli, 2002.
[2]  M. Cordaro, E. Borrelli, and U. Santamaria, “Il problema della misura del colore delle superfici in ICR: dalla colorimetria tristimolo alla spettrofotometria di riflettanza,” Colorimetria e Beni Culturali, Collana Quaderni di Ottica e Fotonica 6, SIOF, Centro Editoriale Toscano, Firenze, Italy, 2000.
[3]  C. Oleari, et al., “Colorimetria e Beni Culturali,” in Proceedings of the Firenze 1999 and Venezia 2000, 1999-2000.
[4]  C. L. Hsien, Introduction to Imaging Color Science, Foxlink Peripherals, 2005.
[5]  M. Ferri De Collibus, L. Bartolini, G. Fornetti et al., “Color (RGB) imaging laser radar,” in International Symposium on Photoelectronic Detection and Imaging 2007: Laser, Ultraviolet, and Terahertz Technology, vol. 6622, Beijing, China, September 2007.
[6]  D. Nitzan, A. E. Brain, and R. O. Duda, “The measurement and use of registered reflectance and range data in scene analysis,” Proceedings of the IEEE, vol. 65, no. 2, pp. 206–220, 1977.
[7]  L. Mullen, A. Laux, B. Concannon, E. P. Zege, I. L. Katsev, and A. S. Prikhach, “Amplitude-modulated laser imager,” Applied Optics, vol. 43, no. 19, pp. 3874–3892, 2004.
[8]  S. Poujouly and B. Journet, “A twofold modulation frequency laser range finder,” Journal of Optics A, vol. 4, no. 6, pp. S356–S363, 2002.
[9]  R. Ricci, L. De Dominicis, M. F. De Collibus, et al., “RGB-ITR: an amplitude-modulated 3D colour laser scanner for cultural heritage applications,” in Proceedings of the International Conference LACONA VIII—Lasers in the Conservation of Artworks, 2009.
[10]  L. Bartolini, A. Bordone, A. Coletti, et al., “Laser In vessel viewing system for nuclear fusion reactors,” in High-Resolution Wavefront Control: methods, Devices, and Applications II, vol. 4124, pp. 201–211, San Diego, Calif, USA, August 2000.
[11]  G. F. Marshall, Handbook of Optical and Laser Scanning, Marcel Dekker, 2004.
[12]  S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. S. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Optics Express, vol. 12, no. 13, pp. 2864–2869, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133