全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Jellyfish Body Plans Provide Allometric Advantages beyond Low Carbon Content

DOI: 10.1371/journal.pone.0072683

Full-Text   Cite this paper   Add to My Lib

Abstract:

Jellyfish form spectacular blooms throughout the world’s oceans. Jellyfish body plans are characterised by high water and low carbon contents which enables them to grow much larger than non-gelatinous animals of equivalent carbon content and to deviate from non-gelatinous pelagic animals when incorporated into allometric relationships. Jellyfish have, however, been argued to conform to allometric relationships when carbon content is used as the metric for comparison. Here we test the hypothesis that differences in allometric relationships for several key functional parameters remain for jellyfish even after their body sizes are scaled to their carbon content. Data on carbon and nitrogen contents, rates of respiration, excretion, growth, longevity and swimming velocity of jellyfish and other pelagic animals were assembled. Allometric relationships between each variable and the equivalent spherical diameters of jellyfish and other pelagic animals were compared before and after sizes of jellyfish were standardised for their carbon content. Before standardisation, the slopes of the allometric relationships for respiration, excretion and growth were the same for jellyfish and other pelagic taxa but the intercepts differed. After standardisation, slopes and intercepts for respiration were similar but excretion rates of jellyfish were 10× slower, and growth rates 2× faster than those of other pelagic animals. Longevity of jellyfish was independent of size. The slope of the allometric relationship of swimming velocity of jellyfish differed from that of other pelagic animals but because they are larger jellyfish operate at Reynolds numbers approximately 10× greater than those of other pelagic animals of comparable carbon content. We conclude that low carbon and high water contents alone do not explain the differences in the intercepts or slopes of the allometric relationships of jellyfish and other pelagic animals and that the evolutionary longevity of jellyfish and their propensity to form blooms is facilitated by their unique body plans.

References

[1]  Lucas CH, Pitt KA, Purcell JE, Lebrato M, Condon RH (2011) What’s in a jellyfish? Proximate and elemental composition and biometric relationships for use in biogeochemical studies. Ecology 92: 1704. doi:10.1890/11-0302.1.
[2]  Acu?a JL, López-Urrutia A, Colin S (2011) Faking giants: The evolution of high prey clearance rates in jellyfishes. Science 333: 1627-1629. doi:10.1126/science.1205134. PubMed: 21921197.
[3]  Harbison GR (1992) The gelatinous inhabitants of the ocean interior. Oceanus 35: 18-23.
[4]  Peters RH (1983) The ecological implications of body size. Cambridge University Press. 329pp.
[5]  Schneider G (1988) Larvae production of the common jellyfish Aurelia aurita in the Western Baltic 1982-1984. Kieler Meeresforschungen 6: 295-300.
[6]  Schneider G (1992) A comparison of carbon-specific respiration rates in gelatinous and non-gelatinous zooplankton - A search for general rules in zooplankton metabolism. Helgol Meeresunters 46: 377-388. doi:10.1007/BF02367205.
[7]  Hirst AG, Roff JC, Lampitt RS (2003) A synthesis of growth rates in marine epipelagic invertebrate zooplankton. Adv Mar Biol 44: 1-142. doi:10.1016/S0065-2881(03)44002-9. PubMed: 12846041.
[8]  Uye S-I (2008) Blooms of the giant jellyfish Nemopilema nomurai: a threat to the fisheries sustainability of the East Asian Marginal Seas. Plankt Benth Res 3: 125-131. doi:10.3800/pbr.3.125.
[9]  Riisg?rd HU (1998) No foundation of a 3/4 power scaling law for respiration in biology. Ecol Lett 1: 71-73. doi:10.1046/j.1461-0248.1998.00020.x.
[10]  Thuesen EV, Childress JJ (1994) Oxygen consumption rates and metabolic enzyme activities of oceanic California medusae in relation to body size and habitat depth. Biol Bull 187: 84-98. doi:10.2307/1542168.
[11]  Seibel BA, Drazen JC (2007) The rate of metabolism in marine animals: environmental constraints, ecological demands and energetic opportunities. Philos Trans R Soc B 362: 2061-2078. doi:10.1098/rstb.2007.2101. PubMed: 17510016.
[12]  Childress JJ (1995) Are there physiological and biochemical adaptations of metabolism in deep-sea animals? Trends Ecol Evol 10: 30-36. doi:10.1016/S0169-5347(00)88957-0. PubMed: 21236941.
[13]  Pitt KA, Welsh DT, Condon RH (2009) Influence of jellyfish blooms on carbon, nitrogen and phosphorus cycling and plankton production. Hydrobiologia 616: 133-149. doi:10.1007/s10750-008-9584-9.
[14]  Hansen PJ, Bjornsen PK, Hansen BW (1997) Zooplankton grazing and growth: Scaling within the 2-2,000-mu m body size range. Limnol Oceanogr 42: 687-704. doi:10.4319/lo.1997.42.4.0687.
[15]  Clarke A, Clarke MR, Holmes LJ, Waters TD (1985) Calorific values and elemental analysis of 11 species of oceanic squids (Mollusca, Cephalopoda). J Mar Biol Assoc UK 65: 983-986. doi:10.1017/S0025315400019457.
[16]  Ki?rboe T (2011) How zooplankton feed: mechanisms, traits and trade-offs. Biol Rev 86: 311-339. doi:10.1111/j.1469-185X.2010.00148.x. PubMed: 20682007.
[17]  Gillooly JF, Brown JH, West GB. , Savage. VM. , Charnov. EL. (2001) Effects of size and temperature on metabolic rate. Science 293: 2248-2251.
[18]  Zahn VM (1981) Wie alt koennen Scyphomedusen werden? Zoologische Beitr 27: 491-495.
[19]  Okubo A (1987) Fantastic voyage into the deep: marine biofluid mechanics. Lect Notes Biomath 71: 32-47.
[20]  Verde EA, McCloskey LR (1998) Production, respiration, and photophysiology of the mangrove jellyfish Cassiopea xamachana symbiotic with zooxanthellae: effect of jellyfish size and season. Mar Ecol Prog Ser 168: 147-162. doi:10.3354/meps168147.
[21]  Ruppert EE, Fox RS, Barnes RD (2004) Invertebrate Zoology. Brooks/Cole. 963pp.
[22]  Donnelly J, Torres JJ, Hopkins TL, Lancraft TM (1994) Chemical composition of Antarctic zooplankton during Austral fall and winter. Polar Biol 14: 171-183.
[23]  Torres JJ, Donnelly J, Hopkins TL, Lancraft TM, Aarset AV et al. (1994) Proximate composition and overwintering strategies of Antarctic micronektonic crustacea. Mar Ecol Prog Ser 113: 221-232. doi:10.3354/meps113221.
[24]  Ventura M (2006) Linking biochemical and elemental composition in freshwater and marine crustacean zooplankton. Mar Ecol Prog Ser 327: 233-246. doi:10.3354/meps327233.
[25]  Goldman JC, Caron DA, Dennett MR (1987) Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C–N ratio. Limnol Oceanogr 32: 1239-1252. doi:10.4319/lo.1987.32.6.1239.
[26]  Condon RH, Steinberg DK, del Giorgio PA, Bouvier TC, Bronk DA et al. (2011) Jellyfish blooms result in a major microbial respiratory sink of carbon in marine systems. Proc Natl Acad Sci USA US 108: 10225-10230. doi:10.1073/pnas.1015782108.
[27]  Costello J (1991) Ccomplete carbon and nitrogen budgets for the hydromedusa Cladonema californicum (Anthomedusa, Cladonemidae). Mar Biol 108: 119-128. doi:10.1007/BF01313479.
[28]  M?ller LF, Riisg?rd HU (2007) Feeding, bioenergetics and growth in the common jellyfish Aurelia aurita and two hydromedusae, Sarsia tubulosa and Aequorea vitrina. Mar Ecol Prog Ser 346: 167-177. doi:10.3354/meps06959.
[29]  Braefield AE, Llewellyn MJ (1982) Animal Energetics. London: Chapman and Hall.
[30]  Donaldson S, Mackie GO, Roberts A (1980) Preliminary observations on escape swimming and giant neurons in Aglantha digitale (Hydromedusae, Trachylina). Can J Zool 58: 549-552. doi:10.1139/z80-076.
[31]  Colin SP, Costello JH (2002) Morphology, swimming performance and propulsive mode of six co-occurring hydromedusae. J Exp Biol 205: 427-437. PubMed: 11854379.
[32]  Fawcett DW, [!(surname)!] , Raviola E (1994) A Textbook of Histology. New York: Chapman and Hall.
[33]  Dabiri JO, Colin SP, Costello JH (2007) Morphological diversity of medusan lineages constrained by animal-fluid interactions. J Exp Biol 210: 1868-1873. doi:10.1242/jeb.003772. PubMed: 17515413.
[34]  Ford MD, Costello JH (2000) Kinematic comparison of bell contraction by four species of hydromedusae. Sci, 64: 47-53.
[35]  Larson RJ (1987) Costs of transport for the scyphomedusa Stomolophus meleagris L. Agassiz Can J Zool 65: 2690-2695. doi:10.1139/z87-408.
[36]  Craig CL, Okubo A (1990) Physical constraints on the evolution of ctenophore size and shape. Evol Ecol 4: 115-129. doi:10.1007/BF02270909.
[37]  Costello JH, Colin SP, Dabiri JO (2008) Medusan morphospace: phylogenetic constraints, biomechanical solutions, and ecological consequences. Invertebr Biol 127: 265-290. doi:10.1111/j.1744-7410.2008.00126.x.
[38]  Madin LP (1988) Feeding behaviour of tentaculate predators: in situ observations and a conceptual model. Bull Mar Sci 43: 413-429.
[39]  Humphries S (2009) Filter feeders and plankton increase particle encounter rates through flow regime control. Proc Natl Acad Sci USA US 106: 7882-7887. doi:10.1073/pnas.0809063106. PubMed: 19416879.
[40]  Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA (2007) Life and death: Metabolic rate, membrane composition, and life span of animals. Physiol Rev 87: 1175-1213. doi:10.1152/physrev.00047.2006. PubMed: 17928583.
[41]  Monaghan P, Metcalfe NB, Torres R (2009) Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. Ecol Lett 12: 75-92. doi:10.1111/j.1461-0248.2008.01258.x. PubMed: 19016828.
[42]  McCoy MW, Gillooly JF (2008) Predicting natural mortality rates of plants and animals. Ecol Lett 11: 710-716. doi:10.1111/j.1461-0248.2008.01190.x. PubMed: 18422635.
[43]  Kikinger R (1992) Cotylorhiza tuberculata (Cnidaria, Scyphozoa) - life history of a stationary population. Mar Ecolpubblicazioni Stazione Zoologica Napoli I 13: 333-362.
[44]  Mills CE (1993) Natural mortality in NE Pacific coastal hydromedusae: grazing predation, wound healing and senescence. Bull Mar Sci 53: 194-203.
[45]  Decker MB, Brown CW, Hood RR, Purcell JE, Gross TF et al. (2007) Predicting the distribution of the scyphomedusa Chrysaora quinquecirrha in Chesapeake Bay. Mar Ecol Prog Ser 329: 99-113. doi:10.3354/meps329099.
[46]  Miglietta MP, Rossi M, Collin R (2008) Hydromedusa blooms and upwelling events in the Bay of Panama, Tropical East Pacific. J Plankton Res 30: 783-793. doi:10.1093/plankt/fbn038.
[47]  Hamner WM, Jenssen RM (1974) Growth, degrowth, and irreversible cell differentiation in Aurelia aurita. Am Zool 14: 833-849.
[48]  Lotan A, Ben-Hillel R, Loya Y (1992) Life cycle of Rhopilema nomadica: a new immigrant scyphomedusan in the Mediterranean. Mar Biol 112: 237-242. doi:10.1007/BF00702467.
[49]  Acu?a JL (2001) Pelagic tunicates: Why gelatinous? Am Nat 158: 100-107. doi:10.1086/320864. PubMed: 18707318.
[50]  Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85: 1771-1789.
[51]  Thuesen EV, Rutherford LD, Brommer PL, Garrison K, Gutowska MA et al. (2005) Intragel oxygen promotes hypoxia tolerance of scyphomedusae. J Exp Biol 208: 2475-2482. doi:10.1242/jeb.01655. PubMed: 15961733.
[52]  Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321: 926-929. doi:10.1126/science.1156401. PubMed: 18703733.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133