全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Histological and Micro-CT Evidence of Stigmatic Rostellum Receptivity Promoting Auto-Pollination in the Madagascan Orchid Bulbophyllum bicoloratum

DOI: 10.1371/journal.pone.0072688

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background The rostellum, a projecting part of the gynostemium in orchid flowers, separates the anther(s) from the stigma and thus commonly prevents auto-pollination. Nonetheless, as a modified (usually distal) portion of the median stigma lobe, the rostellum has been frequently invoked of having re-gained a stigmatic function in rare cases of orchid auto-pollination. Here it is shown that a newly discovered selfing variant of Madagascan Bulbophyllum bicoloratum has evolved a modified rostellum allowing the penetration of pollen tubes from in situ pollinia. Methods Gynostemium micro-morphology and anatomy of selfing and outcrossing variants of B. bicoloratum was studied by using light and scanning electron microscopy and histological sections. Pollen tube growth in the selfing variant was further observed via X-ray computed microtomography (micro-CT), providing 3D reconstructions of floral tissues at a micron scale. Findings Selfing variants possess a suberect (‘displaced’) rostellum rather than the conventional, erect type. Very early in anthesis, the pollinia of selfers are released from the anther and slide down onto the suberect rostellum, where pollen tube growth preferentially occurs through the non-vascularized, i.e. rear (adaxial) and (semi-) lateral parts. This penetrated tissue is comprised of a thin layer of elongate and loosely arranged cells, embedded in stigmatic exudates, as also observed in the stigmatic cavity of both selfing and outcrossing variants. Conclusions Our results provide the first solid evidence of a stigmatic function for the rostellum in orchid flowers, thereby demonstrating for the first time the feasibility of the micro-CT technique for accurately visualizing pollen tube growth in flowering plants. Rostellum receptivity in B. bicoloratum probably uniquely evolved as an adaptation for reproductive assurance from an outcrossing ancestor possessing an erect (non-receptive) rostellum. These findings open up new avenues in the investigation of an organ that apparently re-gained its ‘primordial function’ of being penetrated by pollen tubes.

References

[1]  Darwin C (1862) On the various contrivances by which British and foreign orchids are fertilised by insects, and the good effects of outcrossing. London: John Murray. pp. 365.
[2]  Darwin C (1877) The various contrivances by which orchids are fertilised by insects. 2nd edn. London: John Murray. pp. 360.
[3]  Catling PM (1990) Auto-pollination in the Orchidaceae. In: J. Arditti. Orchid biology: reviews and perspectives, V. Portland. Timber Press. pp. 121–158.
[4]  van der Cingel NA (2001) An atlas of orchid pollination. America, Africa, Asia and Australia. Rotterdam: A.A. Balkema. pp. 260.
[5]  Dressler RL (1981) The orchids: natural history and classification. Cambridge: Harvard University Press. pp. 394.
[6]  Arditti J (1992) Fundamentals of orchid biology. New York: John Wiley & Sons Ltd. pp. 691.
[7]  van der Pijl L, Dodson CH (1966) Orchid flowers: their pollination and evolution. Coral Gables: University of Miami Press. pp. 214.
[8]  Dressler RL (1993) Phylogeny and classification of the orchid family. Portland. Timber Press. pp. 314.
[9]  Yam TW, Arditti J, Cameron KM (2009) "The orchids have been a splendid sport": an alternative look at Charles Darwin’s contribution to orchid biology. Am J Bot 96: 2128–2154. doi:10.3732/ajb.0900122. PubMed: 21622331.
[10]  Rasmussen FN (1982) The gynostemium of the neottioid orchids. Opera Bot 65: 1–96.
[11]  Rasmussen FN (1985) Orchids. In: RMT DahlgrenHT CliffordPF Yeo. The families of the monocotyledons. Berlin: Springer Verlag. pp. 249–274.
[12]  Rasmussen FN (1986) On the various contrivances by which pollinia are attached to viscidia. Lindleyana 1: 21–32.
[13]  Prutsch J, Schill R (2000). Die Ontogenese der Narbe bei den Orchideen. Bibl Bot 151: 1–82.
[14]  Kurzweil H, Kocyan A (2002) Ontogeny of orchid flowers. In: J. Arditti. Orchid biology: reviews and perspectives. Dordrecht: Kluwer. pp. 2–138.
[15]  Kurzweil H, Weston PH, Perkins AJ (2005) Morphological and ontogenetic studies on the gynostemium of some Australian members of Diurideae and Cranichideae (Orchidaceae). Telopea 11: 11–33.
[16]  Efimov PG (2011) An intriguing morphological variability of Platanthera s.l. Eur J Environ Sci: 1: 125–136.
[17]  Vermeulen P (1959) The different structures of the rostellum in Ophrydeae and Neottieae. Acta Bot Neerl 8: 338–355.
[18]  Hagerup O (1952) Bud autogamy in some northern orchids. Phytomorphol 2: 51–60.
[19]  Vermeulen P (1966) The system of the Orchidales. Acta Bot Neerl 15: 224–253.
[20]  Kirchner O (1922) über Selbstbest?ubung bei den Orchideen. Flora 115: 103–127.
[21]  Catling PM (1983) Autogamy in eastern Canadian Orchidaceae: a review of current knowledge and some new observations. Nat Can 110: 37–53.
[22]  Smith JJ (1907) Die Orchideen von Java 8. Bul Dep Agric Indes Neerl. pp. 1–80.
[23]  Gray A (1862) Fertilization of orchids through the agency of insects. Am J Sci Arts 34: 420–429.
[24]  Darwin C (1903) Letter 636. to J. Scott, Down, December 3rd, [1862?]. In: F. DarwinAC Seward. More letters of Charles Darwin. A record of his work in a series of hitherto unpublished letters, vol. 2. London: John Murray.
[25]  Williamson G (1984) Observation of a mechanism by which self-pollination may occur in Eulophia (Orchidaceae). J S Afr Bot 50: 417–423.
[26]  Sieder A, Rainer H, Kiehn M (2007) CITES checklist for Bulbophyllum and allied taxa (Orchidaceae). Available: http://www.cites.org/common/com/NC/tax_r?ef/Bulbophyllum.pdf. Accessed: 22 February 2013.
[27]  Cribb P, Hermans J (2009) A field guide to the orchids of Madagascar. Kew: Royal Botanic Gardens. pp. 440.
[28]  Borba EL, Semir J (1999) Temporal variation in pollinarium size after its removal in species of Bulbophyllum: a different mechanism preventing self-pollination in Orchidaceae. Plant Syst Evol 217: 197–204. doi:10.1007/BF00984365.
[29]  Chen LL, Gao JY (2011) Reproductive ecology of Bulbophyllum ambrosia (Orchidaceae). China J Plants Ecol 35: 1202–1208. doi:10.3724/SP.J.1258.2011.01202.
[30]  Margońska HB (2012) A new subspecies of Bulbophyllum (Orchidaceae, Bulbophyllinae) from The Society Islands. Acta Soc Bot Pol 81: 11–16. doi:10.5586/asbp.2011.034.
[31]  Stuppy WH, Maisano JA, Colbert MW, Rudall PJ, Rowe TB (2003) Three-dimensional analysis of plant structure using high-resolution X-ray computed tomography. Trends Plant Sci 8: 2–6. doi:10.1016/S1360-1385(02)00004-3. PubMed: 12523992.
[32]  van der Niet T, Zollikofer CPE, Ponce de León MS, Johnson SD, Linder HP (2010) Three-dimensional geometric morphometrics for studying floral shape variation. Trends Plant Sci 15: 423–426. doi:10.1016/j.tplants.2010.05.005. PubMed: 20541450.
[33]  Zheden V, Von Byern J, Kerbl A, Leisch N, Staedler Y et al. (2012) Morphology of the cement apparatus and the cement of the Buoy Barnacle Dosima fascicularis (Crustacea, Cirripedia, Thoracica, Lepadidae). Biol Bull 223: 192–204. PubMed: 23111131.
[34]  Igersheim A, Cichocki O (1996) A simple method for microtome sectioning of prehistoric charcoal specimens, embedded in 2-hydroxyethyl methacrylate (HEMA). Rev Palaeobot Palynol 92: 389–393. doi:10.1016/0034-6667(96)00110-8.
[35]  Hayat MA (1993) Stains and cytochemical methods. New York: Plenum Press. pp. 455.
[36]  Clifford SC, Owens SJ (1990) The stigma, style and ovarian transmitting tract in the Oncidinae (Orchidaceae): morphology, developmental anatomy and histochemistry. Bot Gaz 151: 440–451. doi:10.1086/337844.
[37]  Slater AT, Calder DM (1990) Fine structure of the wet, detached cell stigma of the orchid Dendrobium speciosum Sm. Sex Plant Reprod 3: 61–69.
[38]  Hawes C, Satiat-Jeunemaitre B (2001) Plant cell biology. A practical approach. 2nd edn. Oxford: Oxford University Press. pp. 358.
[39]  Sridharan G, Shankar AA (2012) Toluidine blue: a review of its chemistry and clinical utility. J Oral Maxillofac Pathol 16: 251–255. doi:10.4103/0973-029X.99081. PubMed: 22923899.
[40]  Crivellato E, Zweyer M, Basa M, Mallardi F (1990) A ruthenium red-toluidine blue procedure for staining epoxy sections in the light microscopy. Z Mikrosk Anat Forsch 104: 769–778. PubMed: 1708936.
[41]  Pridgeon AM, Cribb PJ, Chase MW, Rasmussen FN (1999) Genera Orchidacearum. Volume 1. General introduction, Apostasioideae, Cypripedioideae. Oxford: Oxford University Press. pp. 240.
[42]  Calder DM, Slater AT (1985) The stigma of Dendrobium speciosum Sm. (Orchidaceae): a new stigma type comprising detached cells within a mucilaginous matrix. Ann Bot 55: 297–307.
[43]  Pacini E, Hesse M (2002) Types of pollen dispersal units in orchids, and their consequences for germination and fertilization. Ann Bot 89: 653–664. doi:10.1093/aob/mcf138. PubMed: 12102520.
[44]  Tan KH, Nishida R (2005) Synomone or kairomone? Bulbophyllum apertum flower releases raspberry ketone to attract Bactrocera fruit flies. J Chem Ecol 31: 497–507. doi:10.1007/s10886-005-2023-8. PubMed: 15898497.
[45]  Heslop-Harrison Y, Shivanna KR (1977) The receptive surface of the angiosperm stigma. Ann Bot 41: 1233–1258.
[46]  Heslop-Harrison Y (1981) Stigma characteristics and angiosperm taxonomy. Nord J Bot 1: 401–420. doi:10.1111/j.1756-1051.1981.tb00707.x.
[47]  Yeung EC (1987) The development and structure of the viscidium in Epidendrum ibaguense H.B.K. (Orchidaceae). Bot Gaz 148: 149–155. doi:10.1086/337642.
[48]  Stpiczyńska M (2003) Stigma receptivity during the life span of Platanthera chlorantha Custer (Rchb.) flowers. Acta Biol Cracov Ser Bot 45: 37–41.
[49]  Slater AT (1991) Interaction of the stigma with the pollinium in Dendrobium speciosum. Aust J Bot 39: 273–282. doi:10.1071/BT9910273.
[50]  Borba EL, Shepherd GJ, Semir J (1999) Reproductive systems and crossing potential in three species of Bulbophyllum (Orchidaceae) occurring in Brazilian 'campo rupestre' vegetation. Plant Syst Evol 217: 205–214. doi:10.1007/BF00984366.
[51]  Tremblay RL, Ackerman JD, Zimmerman JK, Calvo RN (2005) Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification. Biol J Linn Soc 84: 1–54.
[52]  Lloyd DG (1979) Some reproductive factors affecting the selection of self-fertilization in plants. Am Nat 113: 67–79. doi:10.1086/283365.
[53]  Charlesworth D (2006) Evolution of plant breeding systems. Curr Biol 16: R726–R735. doi:10.1016/j.cub.2006.07.068. PubMed: 16950099.
[54]  Eckert CG, Kalisz S, Geber MA, Sargent R, Elle E et al. (2010) Plant mating systems in a changing world. Trends Ecol Evol 25: 35–43. doi:10.1016/j.tree.2009.06.013. PubMed: 19683360.
[55]  Burney DA, Burney LP, Godfrey LR, Jungers WL, Goodman SM et al. (2004) A chronology for late prehistoric Madagascar. J Hum Evol 47: 25–63. doi:10.1016/j.jhevol.2004.05.005. PubMed: 15288523.
[56]  Harper GJ, Steininger MK, Tucker CJ, Juhn D, Hawkins F (2007) Fifty years of deforestation and forest fragmentation in Madagascar. Environ Conserv 34: 1–9. doi:10.1017/S0376892907003554.
[57]  Cable S (2011) New directions and challenges for the conservation of the flora of Madagascar. In: D. BramwellJ. Caujapé-Castells. The biology of island floras. Cambridge, UK: Cambridge University Press. pp. 425–442.
[58]  Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18: 189–197. doi:10.1016/S0169-5347(03)00008-9.
[59]  Pearman PB, Guisan A, Broennimann O, Randin CF (2008) Niche dynamics in space and time. Trends Ecol Evol 23: 149–158. doi:10.1016/j.tree.2007.11.005. PubMed: 18289716.
[60]  Fischer GA, Gravendeel B, Sieder A, Andriantiana J, Heiselmayer P et al. (2007) Evolution of resupination in Malagasy species of Bulbophyllum (Orchidaceae). Mol Phylogenet Evol 45: 358–376. doi:10.1016/j.ympev.2007.06.023. PubMed: 17716924.
[61]  Peter CI, Johnson SD (2009) Autonomous self-pollination and pseudo-fruit set in South African species of Eulophia (Orchidaceae). S Afr J Bot 75: 791–797. doi:10.1016/j.sajb.2009.07.007.
[62]  Peter CI (2009) Pollinators, floral deception and evolutionary processes in Eulophia (Orchidaceae) and its allies. D.Phil. Thesis, University of KwaZuluNatal.
[63]  Suetsugu K (2013) Autogamous fruit set in a mycoheterotrophic orchid Cyrtosia septentrionalis. Plant Syst Evol 299: 481–486. doi:10.1007/s00606-012-0736-z.
[64]  Boavida LC, Borges F, Becker JD, Feijó JA (2011) Whole genome analysis of gene expression reveals coordinated activation of signaling and metabolic pathways during pollen-pistil interactions in Arabidopsis. Plant Physiol 155: 2066–2080. doi:10.1104/pp.110.169813. PubMed: 21317340.
[65]  Jackman WR, Stock DW (2006) Transgenic analysis of Dlx regulation in fish tooth development reveals evolutionary retention of enhancer function despite organ loss. Proc Natl Acad Sci U S A 103: 19390–19395. doi:10.1073/pnas.0609575103. PubMed: 17146045.
[66]  Aceto S, Gaudio L (2011) The MADS and the beauty: genes involved in the development of orchid flowers. Curr Genomics 12: 342–356. doi:10.2174/138920211796429754. PubMed: 22294877.
[67]  Rudall PJ, Perl CD, Bateman RM (2013) Organ homologies in orchid flowers re-interpreted using the Musk Orchid as a model. PeerJ 1: e26. doi:10.7717/peerj.26. PubMed: 23638361.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133