全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Functions of Huntingtin in Germ Layer Specification and Organogenesis

DOI: 10.1371/journal.pone.0072698

Full-Text   Cite this paper   Add to My Lib

Abstract:

Huntington’s disease (HD) is a neurodegenerative disease caused by abnormal polyglutamine expansion in the huntingtin protein (Htt). Although both Htt and the HD pathogenic mutation (mHtt) are implicated in early developmental events, their individual involvement has not been adequately explored. In order to better define the developmental functions and pathological consequences of the normal and mutant proteins, respectively, we employed embryonic stem cell (ESC) expansion, differentiation and induction experiments using huntingtin knock-out (KO) and mutant huntingtin knock-in (Q111) mouse ESC lines. In KO ESCs, we observed impairments in the spontaneous specification and survival of ectodermal and mesodermal lineages during embryoid body formation and under inductive conditions using retinoic acid and Wnt3A, respectively. Ablation of BAX improves cell survival, but failed to correct defects in germ layer specification. In addition, we observed ensuing impairments in the specification and maturation of neural, hepatic, pancreatic and cardiomyocyte lineages. These developmental deficits occurred in concert with alterations in Notch, Hes1 and STAT3 signaling pathways. Moreover, in Q111 ESCs, we observed differential developmental stage-specific alterations in lineage specification and maturation. We also observed changes in Notch/STAT3 expression and activation. Our observations underscore essential roles of Htt in the specification of ectoderm, endoderm and mesoderm, in the specification of neural and non-neural organ-specific lineages, as well as cell survival during early embryogenesis. Remarkably, these developmental events are differentially deregulated by mHtt, raising the possibility that HD-associated early developmental impairments may contribute not only to region-specific neurodegeneration, but also to non-neural co-morbidities.

References

[1]  Gil JM, Rego AC (2008) Mechanisms of neurodegeneration in Huntington’s disease. Eur J Neurosci 27: 2803-2820. doi:10.1111/j.1460-9568.2008.06310.x. PubMed: 18588526.
[2]  Harjes P, Wanker EE (2003) The hunt for huntingtin function: interaction partners tell many different stories. Trends Biochem Sci 28: 425-433. doi:10.1016/S0968-0004(03)00168-3. PubMed: 12932731.
[3]  Cattaneo E, Zuccato C, Tartari M (2005) Normal huntingtin function: an alternative approach to Huntington’s disease. Nat Rev Neurosci 6: 919-930. doi:10.1038/nrm1782. PubMed: 16288298.
[4]  Zuccato C, Valenza M, Cattaneo E (2010) Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev 90: 905-981. doi:10.1152/physrev.00041.2009. PubMed: 20664076.
[5]  Zeitlin S, Liu JP, Chapman DL, Papaioannou VE, Efstratiadis A (1995) Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington’s disease gene homologue. Nat Genet 11: 155-163. doi:10.1038/ng1095-155. PubMed: 7550343.
[6]  Woda JM, Calzonetti T, Hilditch-Maguire P, Duyao MP, Conlon RA et al. (2005) Inactivation of the Huntington’s disease gene (Hdh) impairs anterior streak formation and early patterning of the mouse embryo. BMC Dev Biol 5: 17. doi:10.1186/1471-213X-5-17. PubMed: 16109169.
[7]  Duyao MP, Auerbach AB, Ryan A, Persichetti F, Barnes GT et al. (1995) Inactivation of the mouse Huntington’s disease gene homolog Hdh. Science 269: 407-410. doi:10.1126/science.7618107. PubMed: 7618107.
[8]  Nasir J, Floresco SB, O’Kusky JR, Diewert VM, Richman JM et al. (1995) Targeted disruption of the Huntington’s disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 81: 811-823. doi:10.1016/0092-8674(95)90542-1. PubMed: 7774020.
[9]  Godin JD, Colombo K, Molina-Calavita M, Keryer G, Zala D et al. (2010) Huntingtin is required for mitotic spindle orientation and mammalian neurogenesis. Neuron 67: 392-406. doi:10.1016/j.neuron.2010.06.027. PubMed: 20696378.
[10]  Reiner A, Del Mar N, Meade CA, Yang H, Dragatsis I et al. (2001) Neurons lacking huntingtin differentially colonize brain and survive in chimeric mice. J Neurosci 21: 7608-7619. PubMed: 11567051.
[11]  Molero AE, Gokhan S, Gonzalez S, Feig JL, Alexandre LC et al. (2009) Impairment of developmental stem cell-mediated striatal neurogenesis and pluripotency genes in a knock-in model of Huntington’s disease. Proc Natl Acad Sci U S A 106: 21900-21905. doi:10.1073/pnas.0912171106. PubMed: 19955426.
[12]  Carter RL, Chan AW (2012) Pluripotent stem cells models for Huntington’s disease: prospects and challenges. J Genet Genomics = Yi Chuan Xue Bao 39: 253-259. doi:10.1016/j.jgg.2012.04.006. PubMed: 22749012.
[13]  Yeo JC, Ng HH (2013) The transcriptional regulation of pluripotency. Cell Res 23: 20-32. doi:10.1038/cr.2012.172. PubMed: 23229513.
[14]  MacDonald ME, Duyao M, Calzonetti T, Auerbach A, Ryan A et al. (1996) Targeted inactivation of the mouse Huntington’s disease gene homolog Hdh. Cold Spring Harb Symp Quant Biol 61: 627-638. doi:10.1101/SQB.1996.061.01.063. PubMed: 9246489.
[15]  Conforti P, Camnasio S, Mutti C, Valenza M, Thompson M et al. (2013) Lack of huntingtin promotes neural stem cells differentiation into glial cells while neurons expressing huntingtin with expanded polyglutamine tracts undergo cell death. Neurobiol Dis 50: 160-170. doi:10.1016/j.nbd.2012.10.015. PubMed: 23089356.
[16]  Wheeler VC, Auerbach W, White JK, Srinidhi J, Auerbach A et al. (1999) Length-dependent gametic CAG repeat instability in the Huntington’s disease knock-in mouse. Hum Mol Genet 8: 115-122. doi:10.1093/hmg/8.1.115. PubMed: 9887339.
[17]  Hirai H, Karian P, Kikyo N (2011) Regulation of embryonic stem cell self-renewal and pluripotency by leukaemia inhibitory factor. Biochem J 438: 11-23. doi:10.1042/BJ20102152. PubMed: 21793804.
[18]  Guan K, Rohwedel J, Wobus AM (1999) Embryonic stem cell differentiation models: cardiogenesis, myogenesis, neurogenesis, epithelial and vascular smooth muscle cell differentiation in vitro. Cytotechnology 30: 211-226. doi:10.1023/A:1008041420166. PubMed: 19003371.
[19]  Zhang Y, Leavitt BR, van Raamsdonk JM, Dragatsis I, Goldowitz D et al. (2006) Huntingtin inhibits caspase-3 activation. EMBO J 25: 5896-5906. doi:10.1038/sj.emboj.7601445. PubMed: 17124493.
[20]  Rigamonti D, Sipione S, Goffredo D, Zuccato C, Fossale E et al. (2001) Huntingtin’s neuroprotective activity occurs via inhibition of procaspase-9 processing. J Biol Chem 276: 14545-14548. doi:10.1074/jbc.C100044200. PubMed: 11278258.
[21]  Arnold SJ, Robertson EJ (2009) Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat Rev Mol Cell Biol 10: 91-103. doi:10.1038/nrm2618. PubMed: 19129791.
[22]  Thomson M, Liu SJ, Zou LN, Smith Z, Meissner A et al. (2011) Pluripotency factors in embryonic stem cells regulate differentiation into germ layers. Cell 145: 875-889. doi:10.1016/j.cell.2011.05.017. PubMed: 21663792.
[23]  Schroeder IS, Rolletschek A, Blyszczuk P, Kania G, Wobus AM (2006) Differentiation of mouse embryonic stem cells to insulin-producing cells. Nat Protoc 1: 495-507. doi:10.1038/nprot.2006.71. PubMed: 17406275.
[24]  Zaret KS (2001) Hepatocyte differentiation: from the endoderm and beyond. Curr Opin Genet Dev 11: 568-574. doi:10.1016/S0959-437X(00)00234-3. PubMed: 11532400.
[25]  Hamazaki T, Iiboshi Y, Oka M, Papst PJ, Meacham AM et al. (2001) Hepatic maturation in differentiating embryonic stem cells in vitro. FEBS Lett 497: 15-19. doi:10.1016/S0014-5793(01)02423-1. PubMed: 11376655.
[26]  F?ssler R, Rohwedel J, Maltsev V, Bloch W, Lentini S et al. (1996) Differentiation and integrity of cardiac muscle cells are impaired in the absence of beta 1 integrin. J Cell Sci 109(13): 2989-2999. PubMed: 9004034.
[27]  Chiba S (2006) Notch signaling in stem cell systems. Stem Cells 24: 2437-2447. doi:10.1634/stemcells.2005-0661. PubMed: 16888285.
[28]  Kageyama R, Ohtsuka T, Kobayashi T (2007) The Hes gene family: repressors and oscillators that orchestrate embryogenesis. Development 134: 1243-1251. doi:10.1242/dev.000786. PubMed: 17329370.
[29]  Kamakura S, Oishi K, Yoshimatsu T, Nakafuku M, Masuyama N et al. (2004) Hes binding to STAT3 mediates crosstalk between Notch and JAK-STAT signalling. Nat Cell Biol 6: 547-554. doi:10.1038/ncb1138. PubMed: 15156153.
[30]  Nguyen GD, [!(surname)!] , Molero AE, Mehler MF (2013) Selective roles of normal and mutant huntingtin in neural induction and early neurogenesis. PLOS ONE 8(5): e64368. doi:10.1371/journal.pone.0064368. PubMed: 23691206.
[31]  Ritch JJ, Valencia A, Alexander J, Sapp E, Gatune L et al. (2012) Multiple phenotypes in Huntington disease mouse neural stem cells. Mol Cell Neurosci 50: 70-81. doi:10.1016/j.mcn.2012.03.011. PubMed: 22508027.
[32]  Hackam AS, Yassa AS, Singaraja R, Metzler M, Gutekunst CA et al. (2000) Huntingtin interacting protein 1 induces apoptosis via a novel caspase-dependent death effector domain. J Biol Chem 275: 41299-41308. doi:10.1074/jbc.M008408200. PubMed: 11007801.
[33]  Gervais FG, Singaraja R, Xanthoudakis S, Gutekunst CA, Leavitt BR et al. (2002) Recruitment and activation of caspase-8 by the Huntingtin-interacting protein Hip-1 and a novel partner Hippi. Nat Cell Biol 4: 95-105. doi:10.1038/ncb735. PubMed: 11788820.
[34]  Lo Sardo V, Zuccato C, Gaudenzi G, Vitali B, Ramos C et al. (2012) An evolutionary recent neuroepithelial cell adhesion function of huntingtin implicates ADAM10-Ncadherin. Nat Neurosci 15: 713-721. doi:10.1038/nn.3080. PubMed: 22466506.
[35]  Almeida S, Sarmento-Ribeiro AB, Januário C, Rego AC, Oliveira CR (2008) Evidence of apoptosis and mitochondrial abnormalities in peripheral blood cells of Huntington’s disease patients. Biochem Biophys Res Commun 374: 599-603. doi:10.1016/j.bbrc.2008.07.009. PubMed: 18625199.
[36]  Luo S, Rubinsztein DC (2009) Huntingtin promotes cell survival by preventing Pak2 cleavage. J Cell Sci 122: 875-885. doi:10.1242/jcs.050013. PubMed: 19240112.
[37]  de la Pompa JL, Epstein JA (2012) Coordinating tissue interactions: Notch signaling in cardiac development and disease. Dev Cell 22: 244-254. doi:10.1016/j.devcel.2012.01.014. PubMed: 22340493.
[38]  Wang T, You N, Tao K, Wang X, Zhao G et al. (2012) Notch is the key factor in the process of fetal liver stem/progenitor cells differentiation into hepatocytes. Dev Growth Differ 54: 605-617. doi:10.1111/j.1440-169X.2012.01363.x. PubMed: 22680933.
[39]  Ninov N, Borius M, Stainier DY (2012) Different levels of Notch signaling regulate quiescence, renewal and differentiation in pancreatic endocrine progenitors. Development 139: 1557-1567. doi:10.1242/dev.076000. PubMed: 22492351.
[40]  Shimojo H, Ohtsuka T, Kageyama R (2011) Dynamic expression of notch signaling genes in neural stem/progenitor cells. Front Neurosci 5: 78. PubMed: 21716644.
[41]  Moores JN, Roy S, Nicholson DW, Staveley BE (2008) Huntingtin interacting protein 1 can regulate neurogenesis in Drosophila. Eur J Neurosci 28: 599-609. doi:10.1111/j.1460-9568.2008.06359.x. PubMed: 18702731.
[42]  Godin JD, Poizat G, Hickey MA, Maschat F, Humbert S (2010) Mutant huntingtin-impaired degradation of beta-catenin causes neurotoxicity in Huntington’s disease. EMBO J 29: 2433-2445. doi:10.1038/emboj.2010.117. PubMed: 20531388.
[43]  Liu P, Wakamiya M, Shea MJ, Albrecht U, Behringer RR et al. (1999) Requirement for Wnt3 in vertebrate axis formation. Nat Genet 22: 361-365. doi:10.1038/11932. PubMed: 10431240.
[44]  Haegel H, Larue L, Ohsugi M, Fedorov L, Herrenknecht K et al. (1995) Lack of beta-catenin affects mouse development at gastrulation. Development 121: 3529-3537. PubMed: 8582267.
[45]  Zuccato C, Tartari M, Crotti A, Goffredo D, Valenza M et al. (2003) Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet 35: 76-83. doi:10.1038/ng1219. PubMed: 12881722.
[46]  Yamada Y, Aoki H, Kunisada T, Hara A (2010) Rest promotes the early differentiation of mouse ESCs but is not required for their maintenance. Cell Stem Cell 6: 10-15. doi:10.1016/j.stem.2009.12.003. PubMed: 20085738.
[47]  Pfendler KC, Catuar CS, Meneses JJ, Pedersen RA (2005) Overexpression of Nodal promotes differentiation of mouse embryonic stem cells into mesoderm and endoderm at the expense of neuroectoderm formation. Stem Cells Dev 14: 162-172. doi:10.1089/scd.2005.14.162. PubMed: 15910242.
[48]  Myers RH, Vonsattel JP, Paskevich PA, Kiely DK, Stevens TJ et al. (1991) Decreased neuronal and increased oligodendroglial densities in Huntington’s disease caudate nucleus. J Neuropathol Exp Neurol 50: 729-742. doi:10.1097/00005072-199111000-00005. PubMed: 1836225.
[49]  Younes L, Ratnanather JT, Brown T, Aylward E, Nopoulos P et al. (2012) Regionally selective atrophy of subcortical structures in prodromal HD as revealed by statistical shape analysis. Hum: Brain Mapp.
[50]  Ciarmiello A, Cannella M, Lastoria S, Simonelli M, Frati L et al. (2006) Brain white-matter volume loss and glucose hypometabolism precede the clinical symptoms of Huntington’s disease. J Nucl Med 47: 215-222. PubMed: 16455626.
[51]  Paulsen JS, Nopoulos PC, Aylward E, Ross CA, Johnson H et al. (2010) Striatal and white matter predictors of estimated diagnosis for Huntington disease. Brain. Res Bull 82: 201-207. doi:10.1016/j.brainresbull.2010.04.003.
[52]  Dogan I, Eickhoff SB, Schulz JB, Shah NJ, Laird AR et al. (2012) Consistent Neurodegeneration and Its Association with Clinical Progression in Huntington’s Disease: A Coordinate-Based Meta-Analysis. Neurodegener Dis, 12: 23–35. PubMed: 22922585.
[53]  Rosas HD, Koroshetz WJ, Chen YI, Skeuse C, Vangel M et al. (2003) Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology 60: 1615-1620. doi:10.1212/01.WNL.0000065888.88988.6E. PubMed: 12771251.
[54]  Kassubek J, Gaus W, Landwehrmeyer GB (2004) Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology 62: 523-524; author reply 524 doi:10.1212/WNL.62.3.523. PubMed: 14872054.
[55]  Lanska DJ, Lanska MJ, Lavine L, Schoenberg BS (1988) Conditions associated with Huntington’s disease at death. A case-control study. Arch Neurol 45: 878-880. doi:10.1001/archneur.1988.00520320068017. PubMed: 2969233.
[56]  Pattison JS, Sanbe A, Maloyan A, Osinska H, Klevitsky R et al. (2008) Cardiomyocyte expression of a polyglutamine preamyloid oligomer causes heart failure. Circulation 117: 2743-2751. doi:10.1161/CIRCULATIONAHA.107.750232. PubMed: 18490523.
[57]  Mihm MJ, Amann DM, Schanbacher BL, Altschuld RA, Bauer JA et al. (2007) Cardiac dysfunction in the R6/2 mouse model of Huntington’s disease. Neurobiol Dis 25: 297-308. doi:10.1016/j.nbd.2006.09.016. PubMed: 17126554.
[58]  Andreassen OA, Dedeoglu A, Stanojevic V, Hughes DB, Browne SE et al. (2002) Huntington’s disease of the endocrine pancreas: insulin deficiency and diabetes mellitus due to impaired insulin gene expression. Neurobiol Dis 11: 410-424. doi:10.1006/nbdi.2002.0562. PubMed: 12586550.
[59]  Josefsen K, Nielsen MD, J?rgensen KH, Bock T, N?rrem?lle A et al. (2008) Impaired glucose tolerance in the R6/1 transgenic mouse model of Huntington’s disease. J Neuroendocrinol 20: 165-172. PubMed: 18034868.
[60]  Farrer LA (1985) Diabetes mellitus in Huntington disease. Clin Genet 27: 62-67. PubMed: 3156696.
[61]  Consortium HDi (2012) Induced pluripotent stem cells from patients with Huntington’s disease show CAG-repeat-expansion-associated phenotypes. Cell Stem Cell 11: 264-278. doi:10.1016/j.stem.2012.04.027. PubMed: 22748968.
[62]  Juopperi TA, Kim WR, Chiang CH, Yu H, Margolis RL et al. (2012) Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntington’s disease patient cells. Mol Brain 5: 17. doi:10.1186/1756-6606-5-17. PubMed: 22613578.
[63]  Castiglioni V, Onorati M, Rochon C, Cattaneo E (2012) Induced pluripotent stem cell lines from Huntington’s disease mice undergo neuronal differentiation while showing alterations in the lysosomal pathway. Neurobiol Dis 46: 30-40. doi:10.1016/j.nbd.2011.12.032. PubMed: 22227000.
[64]  Jeon I, Lee N, Li JY, Park IH, Park KS et al. (2012) Neuronal properties, in vivo effects, and pathology of a Huntington’s disease patient-derived induced pluripotent stem cells. Stem Cells 30: 2054-2062. doi:10.1002/stem.1135. PubMed: 22628015.
[65]  Camnasio S, Delli Carri A, Lombardo A, Grad I, Mariotti C et al. (2012) The first reported generation of several induced pluripotent stem cell lines from homozygous and heterozygous Huntington’s disease patients demonstrates mutation related enhanced lysosomal activity. Neurobiol Dis 46: 41-51. doi:10.1016/j.nbd.2011.12.042. PubMed: 22405424.
[66]  Zhang N, An MC, Montoro D, Ellerby LM (2010) Characterization of Human Huntington’s Disease Cell Model from Induced Pluripotent Stem Cells. PLOS Curr 2: RRN1193: RRN1193 PubMed: 21037797.
[67]  An MC, Zhang N, Scott G, Montoro D, Wittkop T et al. (2012) Genetic correction of Huntington’s disease phenotypes in induced pluripotent stem cells. Cell Stem Cell 11: 253-263. doi:10.1016/j.stem.2012.04.026. PubMed: 22748967.
[68]  Gao A, Peng Y, Deng Y, Qing H (2013) Potential therapeutic applications of differentiated induced pluripotent stem cells (iPSCs) in the treatment of neurodegenerative diseases. Neuroscience 228: 47-59. doi:10.1016/j.neuroscience.2012.09.076. PubMed: 23069758.
[69]  Gunaseeli I, Doss MX, Antzelevitch C, Hescheler J, Sachinidis A (2010) Induced pluripotent stem cells as a model for accelerated patient- and disease-specific drug discovery. Curr Med Chem 17: 759-766. doi:10.2174/092986710790514480. PubMed: 20088756.
[70]  Sohn YD, Han JW, Yoon YS (2012) Generation of induced pluripotent stem cells from somatic cells. Prog Mol Biol. Transl Sci 111: 1-26.
[71]  Park IH, Arora N, Huo H, Maherali N, Ahfeldt T et al. (2008) Disease-specific induced pluripotent stem cells. Cell 134: 877-886. doi:10.1016/j.cell.2008.07.041. PubMed: 18691744.
[72]  Marder K, Mehler MF (2012) Development and neurodegeneration: turning HD pathogenesis on its head. Neurology 79: 621-622. doi:10.1212/WNL.0b013e3182648bfe. PubMed: 22815547.
[73]  Kurosawa H (2007) Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. J Biosci Bioeng 103: 389-398. doi:10.1263/jbb.103.389. PubMed: 17609152.
[74]  Okabe S, Forsberg-Nilsson K, Spiro AC, Segal M, McKay RD (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev 59: 89-102. doi:10.1016/0925-4773(96)00572-2. PubMed: 8892235.
[75]  Abrajano JJ, Qureshi IA, Gokhan S, Zheng D, Bergman A et al. (2009) Differential deployment of REST and CoREST promotes glial subtype specification and oligodendrocyte lineage maturation. PLOS ONE 4: e7665. doi:10.1371/journal.pone.0007665. PubMed: 19888342.
[76]  Abrajano JJ, Qureshi IA, Gokhan S, Zheng D, Bergman A et al. (2009) REST and CoREST modulate neuronal subtype specification, maturation and maintenance. PLOS ONE 4: e7936. doi:10.1371/journal.pone.0007936. PubMed: 19997604.
[77]  Yung SY, Gokhan S, Jurcsak J, Molero AE, Abrajano JJ et al. (2002) Differential modulation of BMP signaling promotes the elaboration of cerebral cortical GABAergic neurons or oligodendrocytes from a common sonic hedgehog-responsive ventral forebrain progenitor species. Proc Natl Acad Sci U S A 99: 16273-16278. doi:10.1073/pnas.232586699. PubMed: 12461181.
[78]  Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408. doi:10.1006/meth.2001.1262. PubMed: 11846609.
[79]  Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30: e36. doi:10.1093/nar/30.9.e36. PubMed: 11972351.
[80]  Sun N, Lee A, Wu JC (2009) Long term non-invasive imaging of embryonic stem cells using reporter genes. Nat Protoc 4: 1192-1201. doi:10.1038/nprot.2009.100. PubMed: 19617890.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133