全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

ESTs Analysis Reveals Putative Genes Involved in Symbiotic Seed Germination in Dendrobium officinale

DOI: 10.1371/journal.pone.0072705

Full-Text   Cite this paper   Add to My Lib

Abstract:

Dendrobium officinale (Orchidaceae) is one of the world’s most endangered plants with great medicinal value. In nature, D. officinale seeds must establish symbiotic relationships with fungi to germinate. However, the molecular events involved in the interaction between fungus and plant during this process are poorly understood. To isolate the genes involved in symbiotic germination, a suppression subtractive hybridization (SSH) cDNA library of symbiotically germinated D. officinale seeds was constructed. From this library, 1437 expressed sequence tags (ESTs) were clustered to 1074 Unigenes (including 902 singletons and 172 contigs), which were searched against the NCBI non-redundant (NR) protein database (E-value cutoff, e-5). Based on sequence similarity with known proteins, 579 differentially expressed genes in D. officinale were identified and classified into different functional categories by Gene Ontology (GO), Clusters of orthologous Groups of proteins (COGs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The expression levels of 15 selected genes emblematic of symbiotic germination were confirmed via real-time quantitative PCR. These genes were classified into various categories, including defense and stress response, metabolism, transcriptional regulation, transport process and signal transduction pathways. All transcripts were upregulated in the symbiotically germinated seeds (SGS). The functions of these genes in symbiotic germination were predicted. Furthermore, two fungus-induced calcium-dependent protein kinases (CDPKs), which were upregulated 6.76- and 26.69-fold in SGS compared with un-germinated seeds (UGS), were cloned from D. officinale and characterized for the first time. This study provides the first global overview of genes putatively involved in D. officinale symbiotic seed germination and provides a foundation for further functional research regarding symbiotic relationships in orchids.

References

[1]  Cribb PJ, Kell SP, Dixon KW, Barrett RL (2003) Orchid conservation: a global perspective. Orchid conservation. Kota Kinabalu: Natural History Publications. pp. 1-24.
[2]  Hsiao YY, Pan ZJ, Hsu CC, Yang YP, Hsu YC et al. (2011) Research on orchid biology and biotechnology. Plant Cell Physiol 52: 1467-1486. doi:10.1093/pcp/pcr100. PubMed: 21791545.
[3]  Arditti J, Ghani AKA (2000) Numerical and physical properties of orchid seeds and their biological implications. New Phytol 146: 569-569. doi:10.1046/j.1469-8137.2000.00675.x.
[4]  Rasmussen HN, Rasmussen FN (2009) Orchid mycorrhiza: implications of a mycophagous life style. Oikos 118: 334-345. doi:10.1111/j.1600-0706.2008.17116.x.
[5]  Kristiansen KA, Freudenstein JV, Rasmussen FN, Rasmussen HN (2004) Molecular identification of mycorrhizal fungi in Neuwiedia veratrifolia (Orchidaceae). Mol Phylogenet Evol 33: 251–258. doi:10.1016/j.ympev.2004.05.015. PubMed: 15336661.
[6]  Smith SE, Read DJ (2008) Mycorrhizal symbiosis. New York: Academic Press. 787pp.
[7]  Merckx VS (2013) Mycohetrotrophy: An Introduction. Mycoheterotrophy. Springer Verlag. pp. 1-17.
[8]  Wang H, Fang H, Wang Y, Duan L, Guo S (2011) In situ seed baiting techniques in Dendrobium officinale Kimuraet Migo and Dendrobium nobile Lindl: the endangered Chinese endemic Dendrobium (Orchidaceae). World J Microbiol Biotechnol 27: 2051-2059. doi:10.1007/s11274-011-0667-9.
[9]  Chutima R, Dell B, Lumyong S (2011) Effects of mycorrhizal fungi on symbiotic seed germination of Pecteilis susannae (L.) Rafin (Orchidaceae), a terrestrial orchid in Thailand. Symbiosis 53: 149-156. doi:10.1007/s13199-011-0120-8.
[10]  Burgeff H (1932) Saprophytismus und symbiose. studien an tropischen orchideen. Jena G Fischer: 249.
[11]  Alvarez MR (1968) Quantitative changes in nuclear DNA accompanying postgermination embryonic development in Vanda (Orchidaceae). Am J Bot 55: 1036-1041. doi:10.2307/2440469.
[12]  Williamson B (1970) Induced DNA synthesis in orchid mycorrhiza. Planta 92: 347-354. doi:10.1007/BF00385100.
[13]  Beyrle H, Smith S, Franco C, Peterson R (1995) Colonization of Orchis morio protocorms by a mycorrhizal fungus: effects of nitrogen nutrition and glyphosate in modifying the responses. Can J Bot 73: 1128-1140. doi:10.1139/b95-123.
[14]  Hou XQ, Guo SX (2009) Interaction between a dark septate endophytic isolate from Dendrobium sp. and roots of D. nobile seedlings. J Integr Plant Biol 51: 374-381. doi:10.1111/j.1744-7909.2008.00777.x. PubMed: 21452589.
[15]  Leake JR (2005) Plants parasitic on fungi: unearthing the fungi in myco-heterotrophs and debunking the’saprophytic’plant myth. Mycologist 19: 113-122. doi:10.1017/S0269915X05003046.
[16]  Oldroyd GED, Harrison MJ, Paszkowski U (2009) Reprogramming plant cells for endosymbiosis. Science 324: 753-754. doi:10.1126/science.1171644. PubMed: 19423817.
[17]  Capoen W, Den Herder J, Sun J, Verplancke C, De Keyser A et al. (2009) Calcium spiking patterns and the role of the calcium/calmodulin-dependent kinase CCaMK in lateral root base nodulation of Sesbania rostrata. Plant Cell 21: 1526-1540. doi:10.1105/tpc.109.066233. PubMed: 19470588.
[18]  Reinhardt D (2007) Programming good relations-development of the arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 10: 98-105. doi:10.1016/j.pbi.2006.11.001. PubMed: 17127091.
[19]  Watkinson JI, Welbaum GE (2003) Characterization of gene expression in roots of Cypripedium parviflorum var. pubescens incubated with a mycorrhizal fungus. Acta Horticul: 463-470.
[20]  Cai X, Feng Z, Zhang X, Xu W, Hou B et al. (2011) Genetic diversity and population structure of an endangered Orchid (Dendrobium loddigesii Rolfe) from China revealed by SRAP markers. Sci Horticul 129: 877-881. doi:10.1016/j.scienta.2011.06.001.
[21]  Warcup J (1981) The mycorrhizal relationships of Australian orchids. New Phytol 87: 371-381. doi:10.1111/j.1469-8137.1981.tb03208.x.
[22]  Stewart SL, Zettler LW (2002) Symbiotic germination of three semi-aquatic rein orchids (Habenaria repens, H. quinquiseta, H. macroceratitis) from Florida. Aquat Bot 72: 25-35. doi:10.1016/S0304-3770(01)00214-5.
[23]  Stewart S, Zettler L, Minso J, Brown P (2003) Symbiotic germination and reintroduction of Spiranthes brevilabris Lindley, an endangered orchid native to Florida. Selbyana 24: 64-70.
[24]  Huang X, Madan A (1999) CAP3: A DNA sequence assembly program. Genome Res 9: 868-877. doi:10.1101/gr.9.9.868. PubMed: 10508846.
[25]  Ogata H, Goto S, Sato K, Fujibuchi W, Bono H et al. (1999) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27: 29-34. doi:10.1093/nar/27.20.e29. PubMed: 9847135.
[26]  Zhang G, Song C, Zhao MM, Li B, Guo SX (2012) Characterization of an A-type cyclin-dependent kinase gene from Dendrobium candidum. Biologica 67: 360-368. doi:10.2478/s11756-012-0016-y.
[27]  Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29: e45. doi:10.1093/nar/29.9.e45. PubMed: 11328886.
[28]  Aparicio S, Marsden P (2011) A rapid methylene blue-basic fuchsin stain for semi-thin sections of peripheral nerve and other tissues. J Microsc 89: 139-141.
[29]  Berardini TZ, Mundodi S, Reiser L, Huala E, Garcia-Hernandez M et al. (2004) Functional annotation of the Arabidopsis genome using controlled vocabularies. Plant Physiol 135: 745-755. doi:10.1104/pp.104.040071. PubMed: 15173566.
[30]  Romeis T (2001) Protein kinases in the plant defence response. Curr Opin Plant Biol 4: 407-414. doi:10.1016/S1369-5266(00)00193-X. PubMed: 11597498.
[31]  Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10: 366-371. doi:10.1016/j.pbi.2007.04.020. PubMed: 17644023.
[32]  Asano T, Tanaka N, Yang G, Hayashi N, Komatsu S (2005) Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice. Plant Cell Physiol 46: 356-366. doi:10.1093/pcp/pci035. PubMed: 15695435.
[33]  Hrabak EM, Dickmann LJ, Satterlee JS, Sussman MR (1996) Characterization of eight new members of the calmodulin-like domain protein kinase gene family from Arabidopsis thaliana. Plant Mol Biol 31: 405-412. doi:10.1007/BF00021802. PubMed: 8756605.
[34]  Spaink HP (2002) Plant-microbe interactions: A receptor in symbiotic dialogue. Nature 417: 910-911. doi:10.1038/417910a. PubMed: 12087390.
[35]  Lee H, Kim J, Im JH, Kim HB, Oh CJ et al. (2008) Mitogen-activated protein kinase is involved in the symbiotic interaction between Bradyrhizobium japonicum USDA110 and soybean. J Plant Biol 51: 291-296. doi:10.1007/BF03036129.
[36]  Gargantini PR, Gonzalez-Rizzo S, Chinchilla D, Raices M, Giammaria V et al. (2006) A CDPK isoform participates in the regulation of nodule number in Medicago truncatula. Plant J 48: 843-856. doi:10.1111/j.1365-313X.2006.02910.x. PubMed: 17132148.
[37]  Campos-Soriano L, Gómez-Ariza J, Bonfante P, San Segundo B (2011) A rice calcium-dependent protein kinase is expressed in cortical root cells during the presymbiotic phase of the arbuscular mycorrhizal symbiosis. BMC Plant Biol 11: 90. doi:10.1186/1471-2229-11-90. PubMed: 21595879.
[38]  Yu XC, Zhu SY, Gao GF, Wang XJ, Zhao R et al. (2007) Expression of a grape calcium-dependent protein kinase ACDPK1 in Arabidopsis thaliana promotes plant growth and confers abscisic acid-hypersensitivity in germination, postgermination growth, and stomatal movement. Plant Mol Biol 64: 531-538. doi:10.1007/s11103-007-9172-9. PubMed: 17476573.
[39]  Choi HI, Park HJ, Park JH, Kim S, Im MY et al. (2005) Arabidopsis calcium-dependent protein kinase AtCDPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol 139: 1750-1761. doi:10.1104/pp.105.069757. PubMed: 16299177.
[40]  Liu B, Xue X, Cui S, Zhang X, Han Q et al. (2010) Cloning and characterization of a wheat β-1, 3-glucanase gene induced by the stripe rust pathogen Puccinia striiformis f. sp. tritici. Mol Biol Rep 37: 1045-1052. doi:10.1007/s11033-009-9823-9. PubMed: 19757158.
[41]  Amian AA, Papenbrock J, Jacobsen HJ, Hassan F (2011) Enhancing transgenic pea (Pisum sativum L.) resistance against fungal diseases through stacking of two antifungal genes (Chitinase and Glucanase). GM Crops 2: 104-109. doi:10.4161/gmcr.2.2.16125. PubMed: 21971070.
[42]  Mikes V, Milat ML, Ponchet M, Ricci P, Blein JP (1997) The fungal elicitor cryptogein is a sterol carrier protein. FEBS Lett 416: 190-192. doi:10.1016/S0014-5793(97)01193-9. PubMed: 9369212.
[43]  Reddy S, Pandey A, Melayah D, Marmeisse R, Gay G (2003) The auxin responsive gene Pp‐C61 is up-regulated in Pinus pinaster roots following inoculation with ectomycorrhizal fungi. Plants Cell Enviro 26: 681-691. doi:10.1046/j.1365-3040.2003.01003.x.
[44]  Efrose RC, Flemetakis E, Sfichi L, Stedel C, Kouri ED et al. (2008) Characterization of spermidine and spermine synthases in Lotus japonicus: induction and spatial organization of polyamine biosynthesis in nitrogen fixing nodules. Planta 228: 37-49. doi:10.1007/s00425-008-0717-1. PubMed: 18320213.
[45]  Kyt?viita MM, Sarjala T (1997) Effects of defoliation and symbiosis on polyamine levels in pine and birch. Mycorrhiza 7: 107-111. doi:10.1007/s005720050170.
[46]  Niemi K, H?ggman H, Sarjala T (2002) Effects of exogenous diamines on the interaction between ectomycorrhizal fungi and adventitious root formation in Scots pine in vitro. Tree Physiol 22: 373-381. doi:10.1093/treephys/22.6.373. PubMed: 11960762.
[47]  El Ghachtouli N, Martin-Tanguy J, Paynot M, Gianinazzi S (1996) First-report of the inhibition of arbuscular mycorrhizal infection of Pisum sativum by specific and irreversible inhibition of polyamine biosynthesis or by gibberellic acid treatment. FEBS Lett 385: 189-192. doi:10.1016/0014-5793(96)00379-1. PubMed: 8647248.
[48]  Requena N, Breuninger M, Franken P, Ocón A (2003) Symbiotic status, phosphate, and sucrose regulate the expression of two plasma membrane H+-ATPase genes from the mycorrhizal fungus Glomus mosseae. Plant Physiol 132: 1540-1549. doi:10.1104/pp.102.019042. PubMed: 12857834.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133