全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

ICOS-Expressing Lymphocytes Promote Resolution of CD8-Mediated Lung Injury in a Mouse Model of Lung Rejection

DOI: 10.1371/journal.pone.0072955

Full-Text   Cite this paper   Add to My Lib

Abstract:

Acute rejection, a common complication of lung transplantation, may promote obliterative bronchiolitis leading to graft failure in lung transplant recipients. During acute rejection episodes, CD8+ T cells can contribute to lung epithelial injury but the mechanisms promoting and controlling CD8-mediated injury in the lung are not well understood. To study the mechanisms regulating CD8+ T cell–mediated lung rejection, we used a transgenic model in which adoptively transferred ovalbumin (OVA)-specific cytotoxic T lymphocytes (CTL) induce lung injury in mice expressing an ovalbumin transgene in the small airway epithelium of the lungs (CC10-OVA mice). The lung pathology is similar to findings in humans with acute lung transplant. In the presence of an intact immune response the inflammation resolves by day 30. Using CC10-OVA.RAG-/- mice, we found that CD4+ T cells and ICOS+/+ T cells were required for protection against lethal lung injury, while neutrophil depletion was not protective. In addition, CD4+Foxp3 + ICOS+ T cells were enriched in the lungs of animals surviving lung injury and ICOS+/+ Tregs promoted survival in animals that received ICOS-/- T cells. Direct comparison of ICOS-/- Tregs to ICOS+/+ Tregs found defects in vitro but no differences in the ability of ICOS-/- Tregs to protect from lethal lung injury. These data suggest that ICOS affects Treg development but is not necessarily required for Treg effector function.

References

[1]  Small BA, Dressel SA, Lawrence CW, Drake DR 3rd, Stoler MH et al. (2001) CD8(+) T cell-mediated injury in vivo progresses in the absence of effector T cells. J Exp Med 194: 1835-1846. doi:10.1084/jem.194.12.1835. PubMed: 11748284.
[2]  Clelland C, Higenbottam T, Stewart S, Otulana B, Wreghitt T et al. (1993) Bronchoalveolar lavage and transbronchial lung biopsy during acute rejection and infection in heart-lung transplant patients. Studies of cell counts, lymphocyte phenotypes, and expression of HLA-DR and interleukin-2 receptor. Am Rev Respir Dis 147: 1386-1392. doi:10.1164/ajrccm/147.6_Pt_1.1386. PubMed: 8503549.
[3]  Crim C, Keller CA, Dunphy CH, Maluf HM, Ohar JA (1996) Flow cytometric analysis of lung lymphocytes in lung transplant recipients. Am J Respir Crit Care Med 153: 1041-1046. doi:10.1164/ajrccm.153.3.8630543. PubMed: 8630543.
[4]  Gregson AL, Hoji A, Saggar R, Ross DJ, Kubak BM et al. (2008) Bronchoalveolar immunologic profile of acute human lung transplant allograft rejection. Transplantation 85: 1056-1059. doi:10.1097/TP.0b013e318169bd85. PubMed: 18408589.
[5]  Whitehead BF, Stoehr C, Finkle C, Patterson G, Theodore J et al. (1995) Analysis of bronchoalveolar lavage from human lung transplant recipients by flow cytometry. Respir Med 89: 27-34. doi:10.1016/0954-6111(95)90067-5. PubMed: 7708976.
[6]  Hodge G, Hodge S, Li-Liew C, Chambers D, Hopkins P et al. (2010) Time post-lung transplant correlates with increasing peripheral blood T cell granzyme B and proinflammatory cytokines. Clin Exp Immunol 161: 584-590. doi:10.1111/j.1365-2249.2010.04186.x. PubMed: 20528884.
[7]  Hodge G, Hodge S, Chambers D, Reynolds PN, Holmes M (2007) Acute lung transplant rejection is associated with localized increase in T-cell IFNgamma and TNFalpha proinflammatory cytokines in the airways. Transplantation 84: 1452-1458. doi:10.1097/01.tp.0000290679.94163.e1. PubMed: 18091521.
[8]  Gelman AE, Okazaki M, Lai J, Kornfeld CG, Kreisel FH et al. (2008) CD4+ T lymphocytes are not necessary for the acute rejection of vascularized mouse lung transplants. J Immunol 180: 4754-4762. PubMed: 18354199.
[9]  Boros P, Bromberg JS (2009) Human FOXP3+ regulatory T cells in transplantation. Am J Transplant 9: 1719-1724. doi:10.1111/j.1600-6143.2009.02704.x. PubMed: 19538489.
[10]  Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4: 330-336. doi:10.1038/ni904. PubMed: 12612578.
[11]  Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299: 1057-1061. doi:10.1126/science.1079490. PubMed: 12522256.
[12]  Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155: 1151-1164. PubMed: 7636184.
[13]  Trulock EP, Edwards LB, Taylor DO, Boucek MM, Keck BM et al. (2006) Registry of the International Society for Heart and Lung Transplantation: twenty-third official adult lung and heart-lung transplantation report--2006. J Heart Lung Transplant 25: 880-892. doi:10.1016/j.healun.2006.06.001. PubMed: 16890108.
[14]  Wilkes DS, Egan TM, Reynolds HY (2005) Lung transplantation: opportunities for research and clinical advancement. Am J Respir Crit Care Med 172: 944-955. doi:10.1164/rccm.200501-098WS. PubMed: 16020804.
[15]  Muthukumar T, Dadhania D, Ding R, Snopkowski C, Naqvi R et al. (2005) Messenger RNA for FOXP3 in the urine of renal-allograft recipients. N Engl J Med 353: 2342-2351. doi:10.1056/NEJMoa051907. PubMed: 16319383.
[16]  Martinu T, Howell DN, Palmer SM (2010) Acute cellular rejection and humoral sensitization in lung transplant recipients. Semin Respir Crit Care Med 31: 179-188. doi:10.1055/s-0030-1249113. PubMed: 20354931.
[17]  Wood KJ, Sakaguchi S (2003) Regulatory T cells in transplantation tolerance. Nat Rev Immunol 3: 199-210. doi:10.1038/nri1027. PubMed: 12658268.
[18]  Bystry RS, Aluvihare V, Welch KA, Kallikourdis M, Betz AG (2001) B cells and professional APCs recruit regulatory T cells via CCL4. Nat Immunol 2: 1126-1132. doi:10.1038/ni735. PubMed: 11702067.
[19]  Bhorade SM, Chen H, Molinero L, Liao C, Garrity ER et al. (2010) Decreased percentage of CD4+FoxP3+ cells in bronchoalveolar lavage from lung transplant recipients correlates with development of bronchiolitis obliterans syndrome. Transplantation 90: 540-546. doi:10.1097/00007890-201007272-01007. PubMed: 20628341.
[20]  Bour-Jordan H, Bluestone JA (2009) Regulating the regulators: costimulatory signals control the homeostasis and function of regulatory T cells. Immunol Rev 229: 41-66. doi:10.1111/j.1600-065X.2009.00775.x. PubMed: 19426214.
[21]  Read S, Malmstr?m V, Powrie F (2000) Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 192: 295-302. doi:10.1084/jem.192.2.295. PubMed: 10899916.
[22]  Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J et al. (2000) Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 192: 303-310. doi:10.1084/jem.192.2.303. PubMed: 10899917.
[23]  Jonuleit H, Schmitt E, Stassen M, Tuettenberg A, Knop J et al. (2001) Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. J Exp Med 193: 1285-1294. doi:10.1084/jem.193.11.1285. PubMed: 11390435.
[24]  Sánchez-Fueyo A, Weber M, Domenig C, Strom TB, Zheng XX (2002) Tracking the immunoregulatory mechanisms active during allograft tolerance. J Immunol 168: 2274-2281. PubMed: 11859115.
[25]  Kingsley CI, Karim M, Bushell AR, Wood KJ (2002) CD25+CD4+ regulatory T cells prevent graft rejection: CTLA-4- and IL-10-dependent immunoregulation of alloresponses. J Immunol 168: 1080-1086. PubMed: 11801641.
[26]  Salomon B, Lenschow DJ, Rhee L, Ashourian N, Singh B et al. (2000) B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12: 431-440. doi:10.1016/S1074-7613(00)80195-8. PubMed: 10795741.
[27]  Salomon B, Bluestone JA (2001) Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol 19: 225-252. doi:10.1146/annurev.immunol.19.1.225. PubMed: 11244036.
[28]  Burmeister Y, Lischke T, Dahler AC, Mages HW, Lam KP et al. (2008) ICOS controls the pool size of effector-memory and regulatory T cells. J Immunol 180: 774-782. PubMed: 18178815.
[29]  Ito T, Hanabuchi S, Wang YH, Park WR, Arima K et al. (2008) Two functional subsets of FOXP3+ regulatory T cells in human thymus and periphery. Immunity 28: 870-880. doi:10.1016/j.immuni.2008.03.018. PubMed: 18513999.
[30]  Vocanson M, Rozieres A, Hennino A, Poyet G, Gaillard V et al. (2010) Inducible costimulator (ICOS) is a marker for highly suppressive antigen-specific T cells sharing features of TH17/TH1 and regulatory T cells. J Allergy Clin Immunol 126: 280-289. e281-287 doi:10.1016/j.jaci.2010.05.022. PubMed: 20624644.
[31]  Fulton RB, Meyerholz DK, Varga SM (2010) Foxp3+ CD4 regulatory T cells limit pulmonary immunopathology by modulating the CD8 T cell response during respiratory syncytial virus infection. J Immunol 185: 2382-2392. doi:10.4049/jimmunol.1000423. PubMed: 20639494.
[32]  Medoff BD, Seung E, Wain JC, Means TK, Campanella GS et al. (2005) BLT1-mediated T cell trafficking is critical for rejection and obliterative bronchiolitis after lung transplantation. J Exp Med 202: 97-110. doi:10.1084/jem.20042481. PubMed: 15998790.
[33]  Grabie N, Delfs MW, Westrich JR, Love VA, Stavrakis G et al. (2003) IL-12 is required for differentiation of pathogenic CD8+ T cell effectors that cause myocarditis. J Clin Invest 111: 671-680. doi:10.1172/JCI16867. PubMed: 12618521.
[34]  Shilling RA, Clay BS, Tesciuba AG, Berry EL, Lu T et al. (2009) CD28 and ICOS play complementary non-overlapping roles in the development of Th2 immunity in vivo. Cell Immunol 259: 177-184. doi:10.1016/j.cellimm.2009.06.013. PubMed: 19646680.
[35]  Thornton AM, Piccirillo CA, Shevach EM (2004) Activation requirements for the induction of CD4+CD25+ T cell suppressor function. Eur J Immunol 34: 366-376. doi:10.1002/eji.200324455. PubMed: 14768041.
[36]  Seung E, Cho JL, Sparwasser T, Medoff BD, Luster AD (2011) Inhibiting CXCR3-dependent CD8+ T cell trafficking enhances tolerance induction in a mouse model of lung rejection. J Immunol 186: 6830-6838. doi:10.4049/jimmunol.1001049. PubMed: 21555535.
[37]  Malek TR, Yu A, Scibelli P, Lichtenheld MG, Codias EK (2001) Broad programming by IL-2 receptor signaling for extended growth to multiple cytokines and functional maturation of antigen-activated T cells. J Immunol 166: 1675-1683. PubMed: 11160210.
[38]  Manjunath N, Shankar P, Wan J, Weninger W, Crowley MA et al. (2001) Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes. J Clin Invest 108: 871-878. doi:10.1172/JCI200113296. PubMed: 11560956.
[39]  Pipkin ME, Sacks JA, Cruz-Guilloty F, Lichtenheld MG, Bevan MJ et al. (2010) Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells. Immunity 32: 79-90. doi:10.1016/j.immuni.2009.11.012. PubMed: 20096607.
[40]  Kalia V, Sarkar S, Subramaniam S, Haining WN, Smith KA et al. (2010) Prolonged interleukin-2Ralpha expression on virus-specific CD8+ T cells favors terminal-effector differentiation in vivo. Immunity 32: 91-103. doi:10.1016/j.immuni.2009.11.010. PubMed: 20096608.
[41]  Dummer W, Ernst B, LeRoy E, Lee D, Surh C (2001) Autologous regulation of naive T cell homeostasis within the T cell compartment. J Immunol 166: 2460-2468. PubMed: 11160306.
[42]  D’Alessio FR, Tsushima K, Aggarwal NR, West EE, Willett MH et al. (2009) CD4+CD25+Foxp3+ Tregs resolve experimental lung injury in mice and are present in humans with acute lung injury. J Clin Invest 119: 2898-2913. doi:10.1172/JCI36498. PubMed: 19770521.
[43]  Daley JM, Thomay AA, Connolly MD, Reichner JS, Albina JE (2008) Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice. J Leukoc Biol 83: 64-70. PubMed: 17884993.
[44]  Dunay IR, Fuchs A, Sibley LD (2010) Inflammatory monocytes but not neutrophils are necessary to control infection with Toxoplasma gondii in mice. Infect Immun 78: 1564-1570. doi:10.1128/IAI.00472-09. PubMed: 20145099.
[45]  Shi C, Hohl TM, Leiner I, Equinda MJ, Fan X et al. (2011) Ly6G+ neutrophils are dispensable for defense against systemic Listeria monocytogenes infection. J Immunol 187: 5293-5298. doi:10.4049/jimmunol.1101721. PubMed: 21976773.
[46]  Clay BS, Shilling RA, Bandukwala HS, Moore TV, Cannon JL et al. (2009) Inducible costimulator expression regulates the magnitude of Th2-mediated airway inflammation by regulating the number of Th2 cells. PLOS ONE 4: e7525. doi:10.1371/journal.pone.0007525. PubMed: 19888475.
[47]  Moore TV, Clay BS, Cannon JL, Histed A, Shilling RA et al. (2011) Inducible costimulator controls migration of T cells to the lungs via down-regulation of CCR7 and CD62L. Am J Respir Cell Mol Biol 45: 843-850. doi:10.1165/rcmb.2010-0466OC. PubMed: 21421907.
[48]  Kornete M, Sgouroudis E, Piccirillo CA (2012) ICOS-dependent homeostasis and function of Foxp3+ regulatory T cells in islets of nonobese diabetic mice. J Immunol 188: 1064-1074. doi:10.4049/jimmunol.1101303. PubMed: 22227569.
[49]  Whitehead GS, Wilson RH, Nakano K, Burch LH, Nakano H et al. (2012) IL-35 production by inducible costimulator (ICOS)-positive regulatory T cells reverses established IL-17-dependent allergic airways disease. J Allergy Clin Immunol 129: 207-215 e201-205 doi:10.1016/j.jaci.2011.08.009. PubMed: 21906794.
[50]  Chen Y, Shen S, Gorentla BK, Gao J, Zhong XP (2012) Murine regulatory T cells contain hyperproliferative and death-prone subsets with differential ICOS expression. J Immunol 188: 1698-1707. doi:10.4049/jimmunol.1102448. PubMed: 22231701.
[51]  Redpath SA, van der Werf N, Cervera AM, MacDonald AS, Gray D et al. (2013) ICOS controls Foxp3(+) regulatory T-cell expansion, maintenance and IL-10 production during helminth infection. Eur J Immunol 43: 705-715. doi:10.1002/eji.201242794. PubMed: 23319295.
[52]  Miyamoto K, Kingsley CI, Zhang X, Jabs C, Izikson L et al. (2005) The ICOS molecule plays a crucial role in the development of mucosal tolerance. J Immunol 175: 7341-7347. PubMed: 16301640.
[53]  Bonhagen K, Liesenfeld O, Stadecker MJ, Hutloff A, Erb K et al. (2003) ICOS+ Th cells produce distinct cytokines in different mucosal immune responses. Eur J Immunol 33: 392-401. doi:10.1002/immu.200310013. PubMed: 12645936.
[54]  L?hning M, Hutloff A, Kallinich T, Mages HW, Bonhagen K et al. (2003) Expression of ICOS In Vivo Defines CD4(+) Effector T Cells with High Inflammatory Potential and a Strong Bias for Secretion of Interleukin 10. J Exp Med 197: 181-193. doi:10.1084/jem.20020632. PubMed: 12538658.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133