全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

FERM Domain Containing Protein 7 Interacts with the Rho GDP Dissociation Inhibitor and Specifically Activates Rac1 Signaling

DOI: 10.1371/journal.pone.0073108

Full-Text   Cite this paper   Add to My Lib

Abstract:

The FERM domain containing protein 7 gene (FRMD7) associated with the X-linked disorder idiopathic congenital nystagmus (ICN) is involved in the regulation of neurite elongation during neuronal development. Members of the Rho family of small G-proteins (Rho GTPases) are key regulators of the actin cytoskeleton and are implicated in the control of neuronal morphology. The Rho GDP dissociation inhibitor alpha, RhoGDIα, the main regulator of Rho GTPases, can form a complex with the GDP-bound form of Rho GTPases and inhibit their activation. Here, we demonstrate that the full length of the mouse FRMD7, rather than the N-terminus or the C-terminus alone, directly interacts with RhoGDIα and specifically initiates Rac1 signaling in mouse neuroblastoma cell line (neuro-2a). Moreover, we show that wild-type human FRMD7 protein is able to activate Rac1 signaling by interacting with RhoGDIα and releasing Rac1 from Rac1-RhoGDIα complex. However, two missense mutations (c.781C>G and c.886G>C) of human FRMD7 proteins weaken the ability to interact with RhoGDIα and release less Rac1, that induce the activation of Rac1 to a lesser degree; while an additional mutant, c.1003C>T, which results in a C-terminal truncated protein, almost fails to interact with RhoGDIα and to activate Rac1 signaling. Collectively, these results suggest that FRMD7 interacts with one of the Rho GTPase regulators, RhoGDIα, and activates the Rho subfamily member Rac1, which regulates reorganization of actin filaments and controls neuronal outgrowth. We predict that human mutant FRMD7 thus influences Rac1 signaling activation, which can lead to abnormal neuronal outgrowth and cause the X-linked ICN.

References

[1]  Tarpey P, Thomas S, Sarvananthan N, Mallya U, Lisgo S et al. (2006) Mutations in FRMD7, a newly identified member of the FERM family, cause X-linked idiopathic congenital nystagmus. Nat Genet 38: 1242-1244. doi:10.1038/ng1893. PubMed: 17013395.
[2]  Schorderet DF, Tiab L, Gaillard MC, Lorenz B, Klainguti G et al. (2007) Novel mutations in FRMD7 in X-linked congenital nystagmus. Mutat Brief # 963. Online. Hum Mutat 28: 525.
[3]  Zhang B, Liu Z, Zhao G, Xie X, Yin X et al. (2007) Novel mutations of the FRMD7 gene in X-linked congenital motor nystagmus. Mol Vis 13: 1674-1679. PubMed: 17893669.
[4]  He X, Gu F, Wang Y, Yan J, Zhang M et al. (2008) A novel mutation in FRMD7 causing X-linked idiopathic congenital nystagmus in a large family. Mol Vis 14: 56-60. PubMed: 18246032.
[5]  Fingert JH, Roos B, Eyestone ME, Pham JD, Mellot ML et al. (2010) Novel intragenic FRMD7 deletion in a pedigree with congenital X-linked nystagmus. Ophthal Genet 31: 77-80. doi:10.3109/13816810903584989. PubMed: 20450309.
[6]  Betts-Henderson J, Bartesaghi S, Crosier M, Lindsay S, Chen HL et al. (2010) The nystagmus-associated FRMD7 gene regulates neuronal outgrowth and development. Hum Mol Genet 19: 342-351. doi:10.1093/hmg/ddp500. PubMed: 19892780.
[7]  Chishti AH, Kim AC, Marfatia SM, Lutchman M, Hanspal M et al. (1998) The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem Sci 23: 281-282. doi:10.1016/S0968-0004(98)01237-7. PubMed: 9757824.
[8]  Kubo T, Yamashita T, Yamaguchi A, Sumimoto H, Hosokawa K et al. (2002) A novel FERM domain including guanine nucleotide exchange factor is involved in Rac signaling and regulates neurite remodeling. J Neurosci 22: 8504-8513. PubMed: 12351724.
[9]  Koyano Y, Kawamoto T, Shen M, Yan W, Noshiro M et al. (1997) Molecular cloning and characterization of CDEP, a novel human protein containing the ezrin-like domain of the band 4.1 superfamily and the Dbl homology domain of Rho guanine nucleotide exchange factors. Biochem Biophys Res Commun 241: 369-375. doi:10.1006/bbrc.1997.7826. PubMed: 9425278.
[10]  Zhuang B, Su YS, Sockanathan S (2009) FARP1 promotes the dendritic growth of spinal motor neuron subtypes through transmembrane Semaphorin6A and PlexinA4 signaling. Neuron 61: 359-372. doi:10.1016/j.neuron.2008.12.022. PubMed: 19217374.
[11]  Toyofuku T, Yoshida J, Sugimoto T, Zhang H, Kumanogoh A et al. (2005) FARP2 triggers signals for Sema3A-mediated axonal repulsion. Nat Neurosci 8: 1712-1719. doi:10.1038/nn1596. PubMed: 16286926.
[12]  Threadgill R, Bobb K, Ghosh A (1997) Regulation of dendritic growth and remodeling by Rho, Rac, and Cdc42. Neuron 19: 625-634. doi:10.1016/S0896-6273(00)80376-1. PubMed: 9331353.
[13]  Li Z, Van Aelst L, Cline HT (2000) Rho GTPases regulate distinct aspects of dendritic arbor growth in Xenopus central neurons in vivo. Nat Neurosci 3: 217-225. doi:10.1038/72920. PubMed: 10700252.
[14]  Luo L (2000) Rho GTPases in neuronal morphogenesis. Nat Rev Neurosci 1: 173-180. doi:10.1038/35044547. PubMed: 11257905.
[15]  Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21: 247-269. doi:10.1146/annurev.cellbio.21.020604.150721. PubMed: 16212495.
[16]  Zalcman G, Dorseuil O, Garcia-Ranea JA, Gacon G, Camonis J (1999) RhoGAPs and RhoGDIs, (His)stories of two families. Prog Mol Subcell Biol 22: 85-113. doi:10.1007/978-3-642-58591-3_5. PubMed: 10081066.
[17]  Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129: 865-877. doi:10.1016/j.cell.2007.05.018. PubMed: 17540168.
[18]  Rossman KL, Der CJ, Sondek J (2005) GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 6: 167-180. doi:10.1038/nrg1553. PubMed: 15688002.
[19]  Garcia-Mata R, Boulter E, Burridge K (2011) The 'invisible hand': regulation of RHO GTPases by RHOGDIs. Nat Rev Mol Cell Biol 12: 493-504. doi:10.1038/nrm3153. PubMed: 21779026.
[20]  Takahashi K, Sasaki T, Mammoto A, Takaishi K, Kameyama T et al. (1997) Direct interaction of the Rho GDP dissociation inhibitor with ezrin/radixin/moesin initiates the activation of the Rho small G protein. J Biol Chem 272: 23371-23375. doi:10.1074/jbc.272.37.23371. PubMed: 9287351.
[21]  Akasaki T, Koga H, Sumimoto H (1999) Phosphoinositide 3-kinase-dependent and -independent activation of the small GTPase Rac2 in human neutrophils. J Biol Chem 274: 18055-18059. doi:10.1074/jbc.274.25.18055. PubMed: 10364257.
[22]  Chuang TH, Xu X, Kaartinen V, Heisterkamp N, Groffen J et al. (1995) Abr and Bcr are multifunctional regulators of the Rho GTP-binding protein family. Proc Natl Acad Sci U S A 92: 10282-10286. doi:10.1073/pnas.92.22.10282. PubMed: 7479768.
[23]  Ren XD, Kiosses WB, Schwartz MA (1999) Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J 18: 578-585. doi:10.1093/emboj/18.3.578. PubMed: 9927417.
[24]  Pu J, Li Y, Liu Z, Yan Y, Tian J et al. (2011) Expression and localization of FRMD7 in human fetal brain, and a role for F-actin. Mol Vis 17: 591-597. PubMed: 21386928.
[25]  Watkins RJ, Patil R, Goult BT, Thomas MG, Gottlob I et al. (2013) A novel interaction between FRMD7 and CASK: evidence for a causal role in idiopathic infantile nystagmus. Hum Mol Genet.
[26]  Richnau N, Aspenstr?m P (2001) Rich, a rho GTPase-activating protein domain-containing protein involved in signaling by Cdc42 and Rac1. J Biol Chem 276: 35060-35070. doi:10.1074/jbc.M103540200. PubMed: 11431473.
[27]  Caron E, Hall A (1998) Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282: 1717-1721. doi:10.1126/science.282.5394.1717. PubMed: 9831565.
[28]  Penzes P, Johnson RC, Alam MR, Kambampati V, Mains RE et al. (2000) An isoform of kalirin, a brain-specific GDP/GTP exchange factor, is enriched in the postsynaptic density fraction. J Biol Chem 275: 6395-6403. doi:10.1074/jbc.275.9.6395. PubMed: 10692441.
[29]  Arpin M, Algrain M, Louvard D (1994) Membrane-actin microfilament connections: an increasing diversity of players related to band 4.1. Curr Opin Cell Biol 6: 136-141. doi:10.1016/0955-0674(94)90127-9. PubMed: 8167019.
[30]  Tsukita S, Yonemura S (1997) ERM (ezrin/radixin/moesin) family: from cytoskeleton to signal transduction. Curr Opin Cell Biol 9: 70-75. doi:10.1016/S0955-0674(97)80154-8. PubMed: 9013673.
[31]  Tsukita S, Yonemura S, Tsukita S (1997) ERM proteins: head-to-tail regulation of actin-plasma membrane interaction. Trends Biochem Sci 22: 53-58. doi:10.1016/S0968-0004(96)10071-2. PubMed: 9048483.
[32]  Gary R, Bretscher A (1995) Ezrin self-association involves binding of an N-terminal domain to a normally masked C-terminal domain that includes the F-actin binding site. Mol Biol Cell 6: 1061-1075. PubMed: 7579708.
[33]  Magendantz M, Henry MD, Lander A, Solomon F (1995) Interdomain interactions of radixin in vitro. J Biol Chem 270: 25324-25327. doi:10.1074/jbc.270.43.25324. PubMed: 7592691.
[34]  Martin M, Andréoli C, Sahuquet A, Montcourrier P, Algrain M et al. (1995) Ezrin NH2-terminal domain inhibits the cell extension activity of the COOH-terminal domain. J Cell Biol 128: 1081-1093. doi:10.1083/jcb.128.6.1081. PubMed: 7896873.
[35]  Yamashita T, Tohyama M (2003) The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nat Neurosci 6: 461-467. PubMed: 12692556.
[36]  Del Pozo , Kiosses WB, Alderson NB, Meller N, Hahn KM et al. (2002) Integrins regulate GTP-Rac localized effector interactions through dissociation of Rho-GDI. Nat Cell Biol 4: 232-239. doi:10.1038/ncb759. PubMed: 11862216.
[37]  Fukumoto Y, Kaibuchi K, Hori Y, Fujioka H, Araki S et al. (1990) Molecular cloning and characterization of a novel type of regulatory protein (GDI) for the rho proteins, ras p21-like small GTP-binding proteins. Oncogene 5: 1321-1328. PubMed: 2120668.
[38]  Ueda T, Kikuchi A, Ohga N, Yamamoto J, Takai Y (1990) Purification and characterization from bovine brain cytosol of a novel regulatory protein inhibiting the dissociation of GDP from and the subsequent binding of GTP to rhoB p20, a ras p21-like GTP-binding protein. J Biol Chem 265: 9373-9380. PubMed: 2111820.
[39]  Scherle P, Behrens T, Staudt LM (1993) Ly-GDI, a GDP-dissociation inhibitor of the RhoA GTP-binding protein, is expressed preferentially in lymphocytes. Proc Natl Acad Sci U S A 90: 7568-7572. doi:10.1073/pnas.90.16.7568. PubMed: 8356058.
[40]  Lelias JM, Adra CN, Wulf GM, Guillemot JC, Khagad M et al. (1993) cDNA cloning of a human mRNA preferentially expressed in hematopoietic cells and with homology to a GDP-dissociation inhibitor for the rho GTP-binding proteins. Proc Natl Acad Sci U S A 90: 1479-1483. doi:10.1073/pnas.90.4.1479. PubMed: 8434008.
[41]  Zalcman G, Closson V, Camonis J, Honoré N, Rousseau-Merck MF et al. (1996) RhoGDI-3 is a new GDP dissociation inhibitor (GDI). Identification of a non-cytosolic GDI protein interacting with the small GTP-binding proteins RhoB and RhoG. J Biol Chem 271: 30366-30374. doi:10.1074/jbc.271.48.30366. PubMed: 8939998.
[42]  Adra CN, Manor D, Ko JL, Zhu S, Horiuchi T et al. (1997) RhoGDIgamma: a GDP-dissociation inhibitor for Rho proteins with preferential expression in brain and pancreas. Proc Natl Acad Sci U S A 94: 4279-4284. doi:10.1073/pnas.94.9.4279. PubMed: 9113980.
[43]  Boulter E, Garcia-Mata R, Guilluy C, Dubash A, Rossi G et al. (2010) Regulation of Rho GTPase crosstalk, degradation and activity by RhoGDI1. Nat Cell Biol 12: 477-483. doi:10.1038/ncb2049. PubMed: 20400958.
[44]  Kim O, Yang J, Qiu Y (2002) Selective activation of small GTPase RhoA by tyrosine kinase Etk through its pleckstrin homology domain. J Biol Chem 277: 30066-30071. doi:10.1074/jbc.M201713200. PubMed: 12023958.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133