[1] | McDonald JW, Sadowsky C (2002) Spinal-cord injury. Lancet 359: 417–425. doi:10.1016/S0140-6736(02)07603-1. PubMed: 11844532.
|
[2] | Donnelly DJ, Popovich PG (2008) Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury: Regeneration and Rehabilitation after Spinal Cord Injury. Exp Neurol 209: 378–388. doi:10.1016/j.expneurol.2007.06.009. PubMed: 17662717.
|
[3] | Schnell L, Fearn S, Klassen H, Schwab ME, Perry VH (1999) Acute inflammatory responses to mechanical lesions in the CNS: differences between brain and spinal cord. Eur J Neurosci 11: 3648–3658. doi:10.1046/j.1460-9568.1999.00792.x. PubMed: 10564372.
|
[4] | Qin L, Liu Y, Cooper C, Liu B, Wilson B et al. (2002) Microglia enhance β-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species. J Neurochem 83: 973–983. doi:10.1046/j.1471-4159.2002.01210.x. PubMed: 12421370.
|
[5] | Block ML, Hong J-S (2005) Microglia and inflammation-mediated neurodegeneration: Multiple triggers with a common mechanism. Prog Neurobiol 76: 77–98. doi:10.1016/j.pneurobio.2005.06.004. PubMed: 16081203.
|
[6] | Loane DJ, Byrnes KR (2010) Role of microglia in neurotrauma. Neurotherapeutics 7: 366–377. doi:10.1016/j.nurt.2010.07.002. PubMed: 20880501.
|
[7] | Albrecht PJ, Dahl JP, Stoltzfus OK, Levenson R, Levison SW (2002) Ciliary Neurotrophic Factor Activates Spinal Cord Astrocytes, Stimulating Their Production and Release of Fibroblast Growth Factor-2, to Increase Motor Neuron Survival. Exp Neurol 173: 46–62. doi:10.1006/exnr.2001.7834. PubMed: 11771938.
|
[8] | Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5: 146–156. doi:10.1038/nrn1326. PubMed: 14735117.
|
[9] | Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB et al. (2004) Reactive Astrocytes Protect Tissue and Preserve Function after Spinal Cord Injury. J Neurosci 24: 2143–2155. doi:10.1523/JNEUROSCI.3547-03.2004. PubMed: 14999065.
|
[10] | White RE, Jakeman LB (2008) Don’t fence me in: Harnessing the beneficial roles of astrocytes for spinal cord repair. Restor Neurol Neurosci 26: 197–214. PubMed: 18820411.
|
[11] | Rolls A, Shechter R, Schwartz M (2009) The bright side of the glial scar in CNS repair. Nat Rev Neurosci 10: 235–241. doi:10.1038/nrn2591. PubMed: 19229242.
|
[12] | Coutts M, Keirstead HS (2008) Stem cells for the treatment of spinal cord injury: Regeneration and Rehabilitation after Spinal Cord Injury. Exp Neurol 209: 368–377. doi:10.1016/j.expneurol.2007.09.002. PubMed: 17950280.
|
[13] | Kwon BK, Sekhon LH, Fehlings MG (2010) Emerging repair, regeneration, and translational research advances for spinal cord injury. Spine (Phila Pa 1976 35: S263-S270. PubMed: 20881470.
|
[14] | Tohda C, Kuboyama T (2011) Current and future therapeutic strategies for functional repair of spinal cord injury. Pharmacol Ther 132: 57–71. doi:10.1016/j.pharmthera.2011.05.006. PubMed: 21640756.
|
[15] | Yong VW, Wells J, Giuliani F, Casha S, Power C et al. (2004) The promise of minocycline in neurology. Lancet Neurol 3: 744–751. doi:10.1016/S1474-4422(04)00937-8. PubMed: 15556807.
|
[16] | Kim H-S, Suh Y-H (2009) Minocycline and neurodegenerative diseases. Behav Brain Res 196: 168–179. doi:10.1016/j.bbr.2008.09.040. PubMed: 18977395.
|
[17] | Plane JM, Shen Y, Pleasure DE, Deng W (2010) Prospects for minocycline neuroprotection. Arch Neurol 67: 1442–1448. doi:10.1001/archneurol.2010.191. PubMed: 20697034.
|
[18] | Lee SM, Yune TY, Kim SJ, Park DW, Lee YK et al. (2003) Minocycline Reduces Cell Death and Improves Functional Recovery after Traumatic Spinal Cord Injury in the Rat. J Neurotrauma 20: 1017–1027. doi:10.1089/089771503770195867. PubMed: 14588118.
|
[19] | Cho DC, Cheong JH, Yang MS, Hwang SJ, Kim JM et al. (2011) The effect of minocycline on motor neuron recovery and neuropathic pain in a rat model of spinal cord injury. J Korean Neurosurg Soc 49: 83–91. doi:10.3340/jkns.2011.49.2.83. PubMed: 21519495.
|
[20] | Wells JEA, Hurlbert RJ, Fehlings MG, Yong VW (2003) Neuroprotection by minocycline facilitates significant recovery from spinal cord injury in mice. Brain 126: 1628–1637. doi:10.1093/brain/awg178. PubMed: 12805103.
|
[21] | Nikodemova M, Watters JJ, Jackson SJ, Yang SK, Duncan ID (2007) Minocycline Down-regulates MHC II Expression in Microglia and Macrophages through Inhibition of IRF-1 and Protein Kinase C (PKC)/betaII. J Biol Chem 282: 15208–15216. doi:10.1074/jbc.M611907200. PubMed: 17395590.
|
[22] | Tikka T, Fiebich BL, Goldsteins G, Keinanen R, Koistinaho J (2001) Minocycline, a Tetracycline Derivative, Is Neuroprotective against Excitotoxicity by Inhibiting Activation and Proliferation of Microglia. J Neurosci 21: 2580–2588. PubMed: 11306611.
|
[23] | Cui Y, Liao X-X, Liu W, Guo R-X, Wu Z-Z et al. (2008) A novel role of minocycline: Attenuating morphine antinociceptive tolerance by inhibition of p38 MAPK in the activated spinal microglia. Brain Behav Immun 22: 114–123. doi:10.1016/j.bbi.2007.07.014. PubMed: 17919885.
|
[24] | Nutile-McMenemy N, Elfenbein A, DeLeo JA (2007) Minocycline decreases in vitro microglial motility, β 1 -integrin, and Kv1.3 channel expression. J Neurochem 103: 2035–2046. doi:10.1111/j.1471-4159.2007.04889.x. PubMed: 17868321.
|
[25] | Silva Bastos LF, Pinheiro de Oliveira AC, Magnus Schlachetzki JC, Fiebich BL (2011) Minocycline reduces prostaglandin E synthase expression and 8-isoprostane formation in LPS-activated primary rat microglia. Immunopharmacol Immunotoxicol 33: 576-580. doi:10.3109/08923973.2010.544659. PubMed: 21226556.
|
[26] | Machado LS, Kozak A, Ergul A, Hess DC, Borlongan CV et al. (2006) Delayed minocycline inhibits ischemia-activated matrix metalloproteinases 2 and 9 after experimental stroke. BMC Neurosci 7: 56. doi:10.1186/1471-2202-7-56. PubMed: 16846501.
|
[27] | Gieseler A, Schultze AT, Kupsch K, Haroon MF, Wolf G et al. (2009) Inhibitory modulation of the mitochondrial permeability transition by minocycline. Biochem Pharmacol 77: 888–896. doi:10.1016/j.bcp.2008.11.003. PubMed: 19041852.
|
[28] | Garcia-Martinez EM, Sanz-Blasco S, Karachitos A, Bandez MJ, Fernandez-Gomez FJ et al. (2010) Mitochondria and calcium flux as targets of neuroprotection caused by minocycline in cerebellar granule cells. Biochem Pharmacol 79: 239–250. doi:10.1016/j.bcp.2009.07.028. PubMed: 19682437.
|
[29] | Chen-Roetling J, Chen L, Regan RF (2009) Minocycline attenuates iron neurotoxicity in cortical cell cultures. Biochem Biophys Res Commun 386: 322–326. doi:10.1016/j.bbrc.2009.06.026. PubMed: 19523448.
|
[30] | Pi R, Li W, Lee NTK, Chan HHN, Pu Y et al. (2004) Minocycline prevents glutamate-induced apoptosis of cerebellar granule neurons by differential regulation of p38 and Akt pathways. J Neurochem 91: 1219–1230. doi:10.1111/j.1471-4159.2004.02796.x. PubMed: 15569265.
|
[31] | Guo G, Bhat NR (2007) p38alpha MAP kinase mediates hypoxia-induced motor neuron cell death: a potential target of minocycline’s neuroprotective action. Neurochem Res 32: 2160–2166. doi:10.1007/s11064-007-9408-8. PubMed: 17594516.
|
[32] | Yang L, Sugama S, Chirichigno JW, Gregorio J, Lorenzl S et al. (2003) Minocycline enhances MPTP toxicity to dopaminergic neurons. J Neurosci Res 74: 278–285. doi:10.1002/jnr.10709. PubMed: 14515357.
|
[33] | Diguet E, Fernagut P-O, Wei X, Du Y, Rouland R et al. (2004) Deleterious effects of minocycline in animal models of Parkinson’s disease and Huntington’s disease. Eur J Neurosci 19: 3266–3276. doi:10.1111/j.0953-816X.2004.03372.x. PubMed: 15217383.
|
[34] | Matsukawa N, Yasuhara T, Hara K, Xu L, Maki M et al. (2009) Therapeutic targets and limits of minocycline neuroprotection in experimental ischemic stroke. BMC Neurosci 10: 126. doi:10.1186/1471-2202-10-S1-P126. PubMed: 19807907.
|
[35] | Keller AF, Gravel M, Kriz J (2011) Treatment with minocycline after disease onset alters astrocyte reactivity and increases microgliosis in SOD1 mutant mice. Exp Neurol 228: 69–79. doi:10.1016/j.expneurol.2010.12.010. PubMed: 21168408.
|
[36] | Kupsch K, Hertel S, Kreutzmann P, Wolf G, Wallesch C-W et al. (2009) Impairment of mitochondrial function by minocycline. FEBS J 276: 1729–1738. doi:10.1111/j.1742-4658.2009.06904.x. PubMed: 19243427.
|
[37] | Keilhoff G, Langnaese K, Wolf G, Fansa H (2007) Inhibiting effect of minocycline on the regeneration of peripheral nerves. Dev Neurobiol 67: 1382–1395. doi:10.1002/dneu.20384. PubMed: 17638380.
|
[38] | Haninec P, Dubovy P, ?ámal F, Houstava L, Stejskal L (2004) Reinnervation of the rat musculocutaneous nerve stump after its direct reconnection with the C5 spinal cord segment by the nerve graft following avulsion of the ventral spinal roots: a comparison of intrathecal administration of brain-derived neurotrophic factor and Cerebrolysin. Exp Brain Res 159: 425–432. doi:10.1007/s00221-004-1969-z. PubMed: 15351925.
|
[39] | Keilhoff G, Schild L, Fansa H (2008) Minocycline protects Schwann cells from ischemia-like injury and promotes axonal outgrowth in bioartificial nerve grafts lacking Wallerian degeneration. Exp Neurol 212: 189–200. doi:10.1016/j.expneurol.2008.03.028. PubMed: 18501894.
|
[40] | Haroon MF, Fatima A, Sch?ler S, Gieseler A, Horn TFW et al. (2007) Minocycline, a possible neuroprotective agent in Leber’s hereditary optic neuropathy (LHON): Studies of cybrid cells bearing 11778 mutation. Neurobiol Dis 28: 237–250. doi:10.1016/j.nbd.2007.07.021. PubMed: 17822909.
|
[41] | Kwon BK, Okon E, Hillyer J, Mann C, Baptiste D et al. (2011) A systematic review of non-invasive pharmacologic neuroprotective treatments for acute spinal cord injury. J Neurotrauma 28: 1545-1588. doi:10.1089/neu.2009.1149. PubMed: 20146558.
|
[42] | Vyas A, Li Z, Aspalter M, Feiner J, Hoke A et al. (2010) An in vitro model of adult mammalian nerve repair: Regeneration in the Peripheral Nervous System. Exp Neurol 223: 112–118. doi:10.1016/j.expneurol.2009.05.022. PubMed: 19464291.
|
[43] | Rakowicz WP, Staples CS, Milbrandt J, Brunstrom JE, Johnson EM (2002) Glial Cell Line-Derived Neurotrophic Factor Promotes the Survival of Early Postnatal Spinal Motor Neurons in the Lateral and Medial Motor Columns in Slice Culture. J Neurosci 22: 3953–3962. PubMed: 12019314.
|
[44] | Pinkernelle J, Calatayud P, Goya GF, Fansa H, Keilhoff G (2012) Magnetic nanoparticles in primary neural cell cultures are mainly taken up by microglia. BMC Neurosci 13: 32. doi:10.1186/1471-2202-13-S1-P32. PubMed: 22439862.
|
[45] | Stavridis SI, Dehghani F, Korf H-W, Hailer NP (2005) Characterisation of transverse slice culture preparations of postnatal rat spinal cord: preservation of defined neuronal populations. Histochem Cell Biol 123: 377–392. doi:10.1007/s00418-004-0743-4. PubMed: 15889271.
|
[46] | Watson C, Paxinos G, Kayalioglu G (2009) The spinal cord: A Christopher and Dana Reeve Foundation text and atlas. 1st ed. Amsterdam, Boston: Elsevier/Academic Press.
|
[47] | McCarthy KD, Vellis (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85: 890–902. doi:10.1083/jcb.85.3.890. PubMed: 6248568.
|
[48] | Kimelberg HK (1983) Primary astrocyte cultures? a key to astrocyte function. Cell Mol Neurobiol 3: 1–16. doi:10.1007/BF00734994. PubMed: 6136326.
|
[49] | Hansson E (1986) Primary astroglial cultures. Neurochem Res 11: 759–767. doi:10.1007/BF00965202. PubMed: 2874512.
|
[50] | Hayon T, Dvilansky A, Shpilberg O, Nathan I (2003) Appraisal of the MTT-based assay as a useful tool for predicting drug chemosensitivity in leukemia. Leuk Lymphoma 44: 1957-1962. doi:10.1080/1042819031000116607. PubMed: 14738150.
|
[51] | Sumantran VN (2011) Cellular chemosensitivity assays: an overview. Methods Mol Biol 731: 219-236. doi:10.1007/978-1-61779-080-5_19. PubMed: 21516411.
|
[52] | Saadoun S, Papadopoulos MC, Watanabe H, Yan D, Manley GT et al. (2005) Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J Cell Sci 118: 5691–5698. doi:10.1242/jcs.02680. PubMed: 16303850.
|
[53] | Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37: 173-182. doi:10.1016/0165-0270(91)90128-M. PubMed: 1715499.
|
[54] | Gu H-Y, Chai H, Zhang J-Y, Yao Z-B, Zhou L-H et al. (2004) Survival, regeneration and functional recovery of motoneurons in adult rats by reimplantation of ventral root following spinal root avulsion. Eur J Neurosci 19: 2123–2131. doi:10.1111/j.0953-816X.2004.03295.x. PubMed: 15090039.
|
[55] | Novikov LN, Novikova LN, Mosahebi A, Wiberg M, Terenghi G et al. (2002) A novel biodegradable implant for neuronal rescue and regeneration after spinal cord injury. Biomaterials 23: 3369–3376. doi:10.1016/S0142-9612(02)00037-6. PubMed: 12099279.
|
[56] | Takami T, Oudega M, Bates ML, Wood PM, Kleitman N et al. (2002) Schwann Cell But Not Olfactory Ensheathing Glia Transplants Improve Hindlimb Locomotor Performance in the Moderately Contused Adult Rat Thoracic Spinal Cord. J Neurosci 22: 6670–6681. PubMed: 12151546.
|
[57] | Chen Z-L, Yu W-M, Strickland S (2007) Peripheral regeneration. Annu Rev Neurosci 30: 209–233. doi:10.1146/annurev.neuro.30.051606.094337. PubMed: 17341159.
|
[58] | Fortun J, Hill CE, Bunge MB (2009) Combinatorial strategies with Schwann cell transplantation to improve repair of the injured spinal cord: Cell Based Approaches for CNS Repair. Neurosci Lett 456: 124–132. doi:10.1016/j.neulet.2008.08.092. PubMed: 19429147.
|
[59] | Kashihara Y, Kuno M, Miyata Y (1987) Cell death of axotomized motoneurones in neonatal rats, and its prevention by peripheral reinnervation. J Physiol 386: 135–148. PubMed: 3681703.
|
[60] | Li L, Oppenheim RW, Lei M, Houenou LJ (1994) Neurotrophic agents prevent motoneuron death following sciatic nerve section in the neonatal mouse. J Neurobiol 25: 759–766. doi:10.1002/neu.480250702. PubMed: 8089654.
|
[61] | Rossiter JP, Riopelle RJ, Bisby MA (1996) Axotomy-Induced Apoptotic Cell Death of Neonatal Rat Facial Motoneurons: Time Course Analysis and Relation to NADPH-Diaphorase Activity. Exp Neurol 138: 33–44. doi:10.1006/exnr.1996.0044. PubMed: 8593894.
|
[62] | Eggers R, Tannemaat MR, Ehlert EM, Verhaagen J (2010) A spatio-temporal analysis of motoneuron survival, axonal regeneration and neurotrophic factor expression after lumbar ventral root avulsion and implantation: Regeneration in the Peripheral Nervous System. Exp Neurol 223: 207–220. doi:10.1016/j.expneurol.2009.07.021. PubMed: 19646436.
|
[63] | Chechneva O, Dinkel K, Cavaliere F, Martinez-Sanchez M, Reymann KG (2006) Anti-inflammatory treatment in oxygen–glucose-deprived hippocampal slice cultures is neuroprotective and associated with reduced cell proliferation and intact neurogenesis. Neurobiol Dis 23: 247–259. doi:10.1016/j.nbd.2006.02.015. PubMed: 16733089.
|
[64] | Bastos LFS, Merlo LA, Rocha LTS, Coelho MM (2007) Characterization of the antinociceptive and anti-inflammatory activities of doxycycline and minocycline in different experimental models. Eur J Pharmacol 576: 171–179. doi:10.1016/j.ejphar.2007.07.049. PubMed: 17719028.
|
[65] | Vargas ME, Barres BA (2007) Why Is Wallerian Degeneration in the CNS So Slow?. Annu Rev Neurosci 30: 153–179. doi:10.1146/annurev.neuro.30.051606.094354. PubMed: 17506644.
|
[66] | Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ et al. (2009) Identification of Two Distinct Macrophage Subsets with Divergent Effects Causing either Neurotoxicity or Regeneration in the Injured Mouse Spinal Cord. J Neurosci 29: 13435–13444. doi:10.1523/JNEUROSCI.3257-09.2009. PubMed: 19864556.
|
[67] | Toku K, Tanaka J, Yano H, Desaki J, Zhang B et al. (1998) Microglial cells prevent nitric oxide-induced neuronal apoptosis in vitro. J Neurosci Res 53: 415–425. doi:10.1002/(SICI)1097-4547(19980815)53:4. PubMed: 9710261.
|
[68] | Neumann J, Gunzer M, Gutzeit HO, Ullrich O, Reymann KG et al. (2006) Microglia provide neuroprotection after ischemia. FASEB J 20: 714–716. PubMed: 16473887.
|
[69] | Cui W, Allen ND, Skynner M, Gusterson B, Clark AJ (2001) Inducible ablation of astrocytes shows that these cells are required for neuronal survival in the adult brain. Glia 34: 272–282. doi:10.1002/glia.1061. PubMed: 11360300.
|
[70] | Chen Y, Vartiainen NE, Ying W, Chan PH, Koistinaho J et al. (2001) Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism. J Neurochem 77: 1601–1610. doi:10.1046/j.1471-4159.2001.00374.x. PubMed: 11413243.
|
[71] | Schwartz JP, Nishiyama N (1994) Neurotrophic factor gene expression in astrocytes during development and following injury. Brain. Res Bull 35: 403–407. doi:10.1016/0361-9230(94)90151-1.
|
[72] | Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T et al. (1999) Leukocyte Infiltration, Neuronal Degeneration, and Neurite Outgrowth after Ablation of Scar-Forming, Reactive Astrocytes in Adult Transgenic Mice. Neuron 23: 297–308. doi:10.1016/S0896-6273(00)80781-3. PubMed: 10399936.
|
[73] | Almazin SM, Dziak R, Andreana S, Ciancio SG (2009) The Effect of Doxycycline Hyclate, Chlorhexidine Gluconate, and Minocycline Hydrochloride on Osteoblastic Proliferation and Differentiation In Vitro. J Periodontol 80: 999–1005. doi:10.1902/jop.2009.080574. PubMed: 19485832.
|
[74] | Yao JS, Shen F, Young WL, Yang G-Y (2007) Comparison of doxycycline and minocycline in the inhibition of VEGF-induced smooth muscle cell migration. Neurochem Int 50: 524–530. doi:10.1016/j.neuint.2006.10.008. PubMed: 17145119.
|
[75] | Gomes PS, Fernandes MH (2007) Effect of therapeutic levels of doxycycline and minocycline in the proliferation and differentiation of human bone marrow osteoblastic cells. Arch Oral Biol 52: 251–259. doi:10.1016/j.archoralbio.2006.10.005. PubMed: 17141175.
|
[76] | Sáez JC, Schalper KA, Retamal MA, Orellana JA, Shoji KF et al. (2010) Cell membrane permeabilization via connexin hemichannels in living and dying cells. Exp Cell Res 316: 2377–2389. doi:10.1016/j.yexcr.2010.05.026. PubMed: 20595004.
|
[77] | Kielian T (2008) Glial connexins and gap junctions in CNS inflammation and disease. J Neurochem 106: 1000–1016. doi:10.1111/j.1471-4159.2008.05405.x. PubMed: 18410504.
|
[78] | Nagy JI, Rash JE (2000) Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS. Brain Res Rev 1: 29–44.
|
[79] | Rouach N, Calvo C-F, Glowinski J, Giaume C (2002) Brain macrophages inhibit gap junctional communication and downregulate connexin 43 expression in cultured astrocytes. Eur J Neurosci 15: 403–407. doi:10.1046/j.0953-816x.2001.01868.x. PubMed: 11849308.
|
[80] | Faustmann PM, Haase CG, Romberg S, Hinkerohe D, Szlachta D et al. (2003) Microglia activation influences dye coupling and Cx43 expression of the astrocytic network. Glia 42: 101–108. doi:10.1002/glia.10141. PubMed: 12655594.
|
[81] | Retamal MA, Froger N, Palacios-Prado N, Ezan P, Sáez PJ et al. (2007) Cx43 Hemichannels and Gap Junction Channels in Astrocytes Are Regulated Oppositely by Proinflammatory Cytokines Released from Activated Microglia. J Neurosci 27: 13781–13792. doi:10.1523/JNEUROSCI.2042-07.2007. PubMed: 18077690.
|
[82] | McDonough WS, Johansson A, Joffee H, Giese A, Berens ME (1999) Gap junction intercellular communication in gliomas is inversely related to cell motility. Int J Dev Neurosci 17: 601–611. doi:10.1016/S0736-5748(99)00024-6. PubMed: 10571421.
|
[83] | Homkajorn B, Sims NR, Muyderman H (2010) Connexin 43 regulates astrocytic migration and proliferation in response to injury. Neurosci Lett 486: 197–201. doi:10.1016/j.neulet.2010.09.051. PubMed: 20869426.
|
[84] | Cronin M, Anderson PN, Cook JE, Green CR, Becker DL (2008) Blocking connexin 43 expression reduces inflammation and improves functional recovery after spinal cord injury. Moll Cell Neurosci 39: 152-160. doi:10.1016/j.mcn.2008.06.005. PubMed: 18617007.
|
[85] | Chew SSL, Johnson CS, Green CR, Danesh-Meyer HV (2010) Role of connexin 43 in central nervous system injury. Exp Neurol 225: 250-261. doi:10.1016/j.expneurol.2010.07.014. PubMed: 20655909.
|
[86] | Orellana JA, von Bernhardi R, Giaume C, Sáez JC (2012) Glial hemichannels and their involvement in aging and neurodegenerative diseases. Rev Neurosci 23: 163-177. PubMed: 22499675.
|
[87] | Carlstedt T, Anand P, Hallin R, Misra PV, Norén G et al. (2000) Spinal nerve root repair and reimplantation of avulsed ventral roots into the spinal cord after brachial plexus injury. J Neurosurg 93: 237–247. doi:10.3171/jns.2000.93.2.0237. PubMed: 11012054.
|
[88] | Iannotti C, Li H, Yan P, Lu X, Wirthlin L et al. (2003) Glial cell line-derived neurotrophic factor-enriched bridging transplants promote propriospinal axonal regeneration and enhance myelination after spinal cord injury. Exp Neurol 183: 379–393. doi:10.1016/S0014-4886(03)00188-2. PubMed: 14552879.
|
[89] | Casha S, Zygun D, McGowan MD, Bains I, Yong VW et al. (2012) Results of a phase II placebo-controlled randomized trial of minocycline in acute spinal cord injury. Brain 4: 1224–1236.
|