全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Characterization of GABAergic Neurons in the Mouse Lateral Septum: A Double Fluorescence In Situ Hybridization and Immunohistochemical Study Using Tyramide Signal Amplification

DOI: 10.1371/journal.pone.0073750

Full-Text   Cite this paper   Add to My Lib

Abstract:

Gamma-aminobutyric acid (GABA) neurotransmission in the lateral septum (LS) is implicated in modulating various behavioral processes, including emotional reactivity and maternal behavior. However, identifying the phenotype of GABAergic neurons in the CNS has been hampered by the longstanding inability to reliably detect somal immunoreactivity for GABA or glutamic acid decarboxylase (GAD), the enzyme that produces GABA. In this study, we designed unique probes for both GAD65 (GAD2) and GAD67 (GAD1), and used fluorescence in Situ hybridization (FISH) with tyramide signal amplification (TSA) to achieve unequivocal detection of cell bodies of GABAergic neurons by GAD mRNAs. We quantitatively characterized the expression and chemical phenotype of GABAergic neurons across each subdivision of LS and in cingulate cortex (Cg) and medial preoptic area (MPOA) in female mice. Across LS, almost all GAD65 mRNA-expressing neurons were found to contain GAD67 mRNA (approximately 95-98%), while a small proportion of GAD67 mRNA-containing neurons did not express GAD65 mRNA (5-14%). Using the neuronal marker NeuN, almost every neuron in LS (> 90%) was also found to be GABA-positive. Interneuron markers using calcium-binding proteins showed that LS GABAergic neurons displayed immunoreactivity for calbindin (CB) or calretinin (CR), but not parvalbumin (PV); almost all CB- or CR-immunoreactive neurons (98-100%) were GABAergic. The proportion of GABAergic neurons immunoreactive for CB or CR varied depending on the subdivisions examined, with the highest percentage of colocalization in the caudal intermediate LS (LSI) (approximately 58% for CB and 35% for CR). These findings suggest that the vast majority of GABAergic neurons within the LS have the potential for synthesizing GABA via the dual enzyme systems GAD65 and GAD67, and each subtype of GABAergic neurons identified by distinct calcium-binding proteins may exert unique roles in the physiological function and neuronal circuitry of the LS.

References

[1]  M?hler H (2012) The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacology 62: 42-53. doi:10.1016/j.neuropharm.2011.08.040. PubMed: 21889518.
[2]  Herman JP, Mueller NK, Figueiredo H (2004) Role of GABA and glutamate circuitry in hypothalamo-pituitary-adrenocortical stress integration. Ann N Y Acad Sci 1018: 35-45. doi:10.1196/annals.1296.004. PubMed: 15240350.
[3]  Smith KS, Rudolph U (2012) Anxiety and depression: mouse genetics and pharmacological approaches to the role of GABA(A) receptor subtypes. Neuropharmacology 62: 54-62. doi:10.1016/j.neuropharm.2011.07.026. PubMed: 21810433.
[4]  Martijena ID, Rodríguez Manzanares PA, Lacerra C, Molina VA (2002) Gabaergic modulation of the stress response in frontal cortex and amygdala. Synapse 45: 86-94. doi:10.1002/syn.10085. PubMed: 12112401.
[5]  Kalueff AV, Nutt DJ (2007) Role of GABA in anxiety and depression. Depress Anxiety 24: 495-517. doi:10.1002/da.20262. PubMed: 17117412.
[6]  Lonstein JS (2007) Regulation of anxiety during the postpartum period. Front Neuroendocrinol 28: 115-141. doi:10.1016/j.yfrne.2007.05.002. PubMed: 17604088.
[7]  Lee G, Gammie SC (2009) GABA(A) receptor signaling in the lateral septum regulates maternal aggression in mice. Behav Neurosci 123: 1169-1177. doi:10.1037/a0017535. PubMed: 20001101.
[8]  Lee G, Gammie SC (2010) GABAA receptor signaling in caudal periaqueductal gray regulates maternal aggression and maternal care in mice. Behav Brain Res 213: 230-237. doi:10.1016/j.bbr.2010.05.001. PubMed: 20457185.
[9]  McDonald MM, Markham CM, Norvelle A, Albers HE, Huhman KL (2012) GABAA receptor activation in the lateral septum reduces the expression of conditioned defeat and increases aggression in Syrian hamsters. Brain Res 1439: 27-33. doi:10.1016/j.brainres.2011.12.042. PubMed: 22265703.
[10]  Sloviter RS, Nilaver G (1987) Immunocytochemical localization of GABA-, cholecystokinin-, vasoactive intestinal polypeptide-, and somatostatin-like immunoreactivity in the area dentata and hippocampus of the rat. J Comp Neurol 256: 42-60. doi:10.1002/cne.902560105. PubMed: 3819038.
[11]  Miettinen R, Gulyás AI, Baimbridge KG, Jacobowitz DM, Freund TF (1992) Calretinin is present in non-pyramidal cells of the rat hippocampus--II. Co-existence with other calcium binding proteins and GABA. Neuroscience 48: 29-43. doi:10.1016/0306-4522(92)90335-Y. PubMed: 1584423.
[12]  Acsády L, Katona I, Gulyás AI, Shigemoto R, Freund TF (1997) Immunostaining for substance P receptor labels GABAergic cells with distinct termination patterns in the hippocampus. J Comp Neurol 378: 320-336. doi:10.1002/(SICI)1096-9861(19970217)378:3. PubMed: 9034894.
[13]  Casta?eda MT, Sanabria ER, Hernandez S, Ayala A, Reyna TA et al. (2005) Glutamic acid decarboxylase isoforms are differentially distributed in the septal region of the rat. Neurosci Res 52: 107-119. doi:10.1016/j.neures.2005.02.003. PubMed: 15811558.
[14]  Stephenson DT, Li Q, Simmons C, Connell MA, Meglasson MD et al. (2005) Expression of GAD65 and GAD67 immunoreactivity in MPTP-treated monkeys with or without L-DOPA administration. Neurobiol Dis 20: 347-359. doi:10.1016/j.nbd.2005.03.016. PubMed: 15882945.
[15]  Ricci LA, Grimes JM, Knyshevski I, Melloni RH (2005) Repeated cocaine exposure during adolescence alters glutamic acid decarboxylase-65 (GAD65) immunoreactivity in hamster brain: correlation with offensive aggression. Brain Res 1035: 131-138. doi:10.1016/j.brainres.2004.11.049. PubMed: 15722053.
[16]  Grimes JM, Ricci LA, Melloni RH Jr. (2003) Glutamic acid decarboxylase (GAD65) immunoreactivity in brains of aggressive, adolescent anabolic steroid-treated hamsters. Horm Behav 44: 271-280. doi:10.1016/S0018-506X(03)00138-7. PubMed: 14609549.
[17]  Wenthold RJ, Zempel JM, Parakkal MH, Reeks KA, Altschuler RA (1986) Immunocytochemical localization of GABA in the cochlear nucleus of the guinea pig. Brain Res 380: 7-18. doi:10.1016/0006-8993(86)91423-X. PubMed: 3530371.
[18]  Sloviter RS, Ali-Akbarian L, Horvath KD, Menkens KA (2001) Substance P receptor expression by inhibitory interneurons of the rat hippocampus: enhanced detection using improved immunocytochemical methods for the preservation and colocalization of GABA and other neuronal markers. J Comp Neurol 430: 283-305. doi:10.1002/1096-9861(20010212)430:3. PubMed: 11169468.
[19]  Kubota Y, Hattori R, Yui Y (1994) Three distinct subpopulations of GABAergic neurons in rat frontal agranular cortex. Brain Res 649: 159-173. doi:10.1016/0006-8993(94)91060-X. PubMed: 7525007.
[20]  del Río MR, DeFelipe J (1996) Colocalization of calbindin D-28k, calretinin, and GABA immunoreactivities in neurons of the human temporal cortex. J Comp Neurol 369: 472-482. doi:10.1002/(SICI)1096-9861(19960603)369:3. PubMed: 8743426.
[21]  Martínez-Guijarro FJ, Freund TF (1992) Distribution of GABAergic interneurons immunoreactive for calretinin, calbindin D28K, and parvalbumin in the cerebral cortex of the lizard Podarcis hispanica. J Comp Neurol 322: 449-460. doi:10.1002/cne.903220311. PubMed: 1517487.
[22]  Onteniente B, Tago H, Kimura H, Maeda T (1986) Distribution of gamma-aminobutyric acid-immunoreactive neurons in the septal region of the rat brain. J Comp Neurol 248: 422-430. doi:10.1002/cne.902480310. PubMed: 3522664.
[23]  Kohler C, Chan-Palay V (1983) Distribution of gamma aminobutyric acid containing neurons and terminals in the septal area. An immunohistochemical study using antibodies to glutamic acid decarboxylase in the rat brain. Anat Embryol (Berl) 167: 53-65. doi:10.1007/BF00304600.
[24]  McDonald AJ, Mascagni F (2001) Colocalization of calcium-binding proteins and GABA in neurons of the rat basolateral amygdala. Neuroscience 105: 681-693. doi:10.1016/S0306-4522(01)00214-7. PubMed: 11516833.
[25]  Panula P, Revuelta AV, Cheney DL, Wu JY, Costa E (1984) An immunohistochemical study on the location of GABAergic neurons in rat septum. J Comp Neurol 222: 69-80. doi:10.1002/cne.902220107. PubMed: 6365983.
[26]  Ribak CE, Vaughn JE, Saito K (1978) Immunocytochemical localization of glutamic acid decarboxylase in neuronal somata following colchicine inhibition of axonal transport. Brain Res 140: 315-332. doi:10.1016/0006-8993(78)90463-8. PubMed: 75042.
[27]  Mugnaini E, Oertel W (1985) An atlas of the distribution of GABAergic neurons and terminals in the rat CNS as revealed by GAD immunohistochemistry. A. BjorklundT. Hokfelt. New York: Elsevier.
[28]  Ito T, Hioki H, Nakamura K, Tanaka Y, Nakade H et al. (2007) Gamma-aminobutyric acid-containing sympathetic preganglionic neurons in rat thoracic spinal cord send their axons to the superior cervical ganglion. J Comp Neurol 502: 113-125. doi:10.1002/cne.21309. PubMed: 17335042.
[29]  Oliva AA Jr., Jiang M, Lam T, Smith KL, Swann JW (2000) Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons. J Neurosci 20: 3354-3368. PubMed: 10777798.
[30]  Chattopadhyaya B, Di Cristo G, Higashiyama H, Knott GW, Kuhlman SJ et al. (2004) Experience and activity-dependent maturation of perisomatic GABAergic innervation in primary visual cortex during a postnatal critical period. J Neurosci 24: 9598-9611. doi:10.1523/JNEUROSCI.1851-04.2004. PubMed: 15509747.
[31]  Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K et al. (2003) Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 467: 60-79. doi:10.1002/cne.10905. PubMed: 14574680.
[32]  Jarvie BC, Hentges ST (2012) Expression of GABAergic and glutamatergic phenotypic markers in hypothalamic proopiomelanocortin neurons. J Comp Neurol 520: 3863-3876. doi:10.1002/cne.23127. PubMed: 22522889.
[33]  Brown RE, McKenna JT, Winston S, Basheer R, Yanagawa Y et al. (2008) Characterization of GABAergic neurons in rapid-eye-movement sleep controlling regions of the brainstem reticular formation in GAD67-green fluorescent protein knock-in mice. Eur J Neurosci 27: 352-363. doi:10.1111/j.1460-9568.2008.06024.x. PubMed: 18215233.
[34]  Bang SJ, Commons KG (2012) Forebrain GABAergic projections from the dorsal raphe nucleus identified by using GAD67-GFP knock-in mice. J Comp Neurol 520: 4157-4167. doi:10.1002/cne.23146. PubMed: 22605640.
[35]  Esclapez M, Tillakaratne NJ, Tobin AJ, Houser CR (1993) Comparative localization of mRNAs encoding two forms of glutamic acid decarboxylase with nonradioactive in situ hybridization methods. J Comp Neurol 331: 339-362. doi:10.1002/cne.903310305. PubMed: 8514913.
[36]  Trifonov S, Houtani T, Kase M, Toida K, Maruyama M et al. (2012) Lateral regions of the rodent striatum reveal elevated glutamate decarboxylase 1 mRNA expression in medium-sized projection neurons. Eur J Neurosci 35: 711-722. doi:10.1111/j.1460-9568.2012.08001.x. PubMed: 22332935.
[37]  Xi X, Roane DS, Zhou J, Ryan DH, Martin RJ (2003) Double-color fluorescence in situ hybridization with RNA probes. BioTechniques 34: 914-916.12765014.
[38]  Denkers N, García-Villalba P, Rodesch CK, Nielson KR, Mauch TJ (2004) FISHing for chick genes: Triple-label whole-mount fluorescence in situ hybridization detects simultaneous and overlapping gene expression in avian embryos. Dev Dyn 229: 651-657. doi:10.1002/dvdy.20005. PubMed: 14991720.
[39]  Barroso-Chinea P, Aymerich MS, Castle MM, Pérez-Manso M, Tu?ón T et al. (2007) Detection of two different mRNAs in a single section by dual in situ hybridization: a comparison between colorimetric and fluorescent detection. J Neurosci Methods 162: 119-128. doi:10.1016/j.jneumeth.2006.12.017. PubMed: 17306886.
[40]  Breininger JF, Baskin DG (2000) Fluorescence in situ hybridization of scarce leptin receptor mRNA using the enzyme-labeled fluorescent substrate method and tyramide signal amplification. J Histochem Cytochem 48: 1593-1599. doi:10.1177/002215540004801202. PubMed: 11101627.
[41]  van Gijlswijk RP, Zijlmans HJ, Wiegant J, Bobrow MN, Erickson TJ et al. (1997) Fluorochrome-labeled tyramides: use in immunocytochemistry and fluorescence in situ hybridization. J Histochem Cytochem 45: 375-382. doi:10.1177/002215549704500305. PubMed: 9071319.
[42]  Sheehan TP, Chambers RA, Russell DS (2004) Regulation of affect by the lateral septum: implications for neuropsychiatry. Brain Res Brain Res Rev 46: 71-117. doi:10.1016/j.brainresrev.2004.04.009. PubMed: 15297155.
[43]  Risold PY, Swanson LW (1997b) Chemoarchitecture of the rat lateral septal nucleus. Brain Res Brain Res Rev 24: 91-113. doi:10.1016/S0165-0173(97)00008-8. PubMed: 9385453.
[44]  Singewald GM, Rjabokon A, Singewald N, Ebner K (2011) The modulatory role of the lateral septum on neuroendocrine and behavioral stress responses. Neuropsychopharmacology 36: 793-804. doi:10.1038/npp.2010.213. PubMed: 21160468.
[45]  Lukas M, Bredewold R, Landgraf R, Neumann ID, Veenema AH (2011) Early life stress impairs social recognition due to a blunted response of vasopressin release within the septum of adult male rats. Psychoneuroendocrinology 36: 843-853. doi:10.1016/j.psyneuen.2010.11.007. PubMed: 21185124.
[46]  Everts HG, Koolhaas JM (1999) Differential modulation of lateral septal vasopressin receptor blockade in spatial learning, social recognition, and anxiety-related behaviors in rats. Behav Brain Res 99: 7-16. doi:10.1016/S0166-4328(98)00004-7. PubMed: 10512567.
[47]  Liu S, Bubar MJ, Lanfranco MF, Hillman GR, Cunningham KA (2007) Serotonin2C receptor localization in GABA neurons of the rat medial prefrontal cortex: implications for understanding the neurobiology of addiction. Neuroscience 146: 1677-1688. doi:10.1016/j.neuroscience.2007.02.064. PubMed: 17467185.
[48]  Celio MR (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35: 375-475. doi:10.1016/0306-4522(90)90091-H. PubMed: 2199841.
[49]  Doutrelant O, Poulain P, Carette B (1993) Comparative distribution of calbindin and Met-enkephalin immunoreactivities in the guinea-pig lateral septum, with reference to electrophysiologically characterized neurons in the mediolateral part. Brain Res 615: 335-341. doi:10.1016/0006-8993(93)90046-P. PubMed: 7689913.
[50]  Doutrelant-Viltart O, Poulain P (1996) Distribution of NADPHdiaphorase and calbindin-D28k neurons in the lateral septal area of the guinea pig, with special reference to the enkephalinergic hypothalamo-septal tract. J Chem Neuroanat 11: 199-207. doi:10.1016/0891-0618(96)00160-3. PubMed: 8906461.
[51]  Riedel A, Westerholz S, Braun K, Edwards RH, Arendt T et al. (2008) Vesicular glutamate transporter 3-immunoreactive pericellular baskets ensheath a distinct population of neurons in the lateral septum. J Chem Neuroanat 36: 177-190. doi:10.1016/j.jchemneu.2008.06.003. PubMed: 18611437.
[52]  Freund TF (1989) GABAergic septohippocampal neurons contain parvalbumin. Brain Res 478: 375-381. doi:10.1016/0006-8993(89)91520-5. PubMed: 2924136.
[53]  Erlander MG, Tillakaratne NJ, Feldblum S, Patel N, Tobin AJ (1991) Two genes encode distinct glutamate decarboxylases. Neuron 7: 91-100. doi:10.1016/0896-6273(91)90077-D. PubMed: 2069816.
[54]  Erlander MG, Tobin AJ (1991) The structural and functional heterogeneity of glutamic acid decarboxylase: a review. Neurochem Res 16: 215-226. doi:10.1007/BF00966084. PubMed: 1780024.
[55]  Soghomonian JJ, Martin DL (1998) Two isoforms of glutamate decarboxylase: why? Trends Pharmacol Sci 19: 500-505. doi:10.1016/S0165-6147(98)01270-X. PubMed: 9871412.
[56]  Garrido Sanabria ER, Casta?eda MT, Banuelos C, Perez-Cordova MG, Hernandez S et al. (2006) Septal GABAergic neurons are selectively vulnerable to pilocarpine-induced status epilepticus and chronic spontaneous seizures. Neuroscience 142: 871-883. doi:10.1016/j.neuroscience.2006.06.057. PubMed: 16934946.
[57]  Esclapez M, Tillakaratne NJ, Kaufman DL, Tobin AJ, Houser CR (1994) Comparative localization of two forms of glutamic acid decarboxylase and their mRNAs in rat brain supports the concept of functional differences between the forms. J Neurosci 14: 1834-1855. PubMed: 8126575.
[58]  Beauvillain JC, Mitchell V, Tramu G, Mazzuca M (1991) GABA and enkephalin in the lateral septum of the guinea pig: light and electron microscopic evidence for interrelations. J Comp Neurol 308: 103-114. doi:10.1002/cne.903080110. PubMed: 1874977.
[59]  Onténiente B, Geffard M, Campistron G, Calas A (1987) An ultrastructural study of GABA-immunoreactive neurons and terminals in the septum of the rat. J Neurosci 7: 48-54. PubMed: 3543251.
[60]  Feldblum S, Erlander MG, Tobin AJ (1993) Different distributions of GAD65 and GAD67 mRNAs suggest that the two glutamate decarboxylases play distinctive functional roles. J Neurosci Res 34: 689-706. doi:10.1002/jnr.490340612. PubMed: 8315667.
[61]  Mercugliano M, Soghomonian JJ, Qin Y, Nguyen HQ, Feldblum S et al. (1992) Comparative distribution of messenger RNAs encoding glutamic acid decarboxylases (Mr 65,000 and Mr 67,000) in the basal ganglia of the rat. J Comp Neurol 318: 245-254. doi:10.1002/cne.903180302. PubMed: 1583162.
[62]  Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development 116: 201-211. PubMed: 1483388.
[63]  Wolf HK, Buslei R, Schmidt-Kastner R, Schmidt-Kastner PK, Pietsch T et al. (1996) NeuN: a useful neuronal marker for diagnostic histopathology. J Histochem Cytochem 44: 1167-1171. doi:10.1177/44.10.8813082. PubMed: 8813082.
[64]  Liu S, Wang J, Zhu D, Fu Y, Lukowiak K et al. (2003) Generation of functional inhibitory neurons in the adult rat hippocampus. J Neurosci 23: 732-736. PubMed: 12574400.
[65]  Galle AA, Jones NM (2013) The neuroprotective actions of hypoxic preconditioning and postconditioning in a neonatal rat model of hypoxic-ischemic brain injury. Brain Res 1498: 1-8. doi:10.1016/j.brainres.2012.12.026.
[66]  Sui Y, Vermeulen R, H?kfelt T, Horne MK, Stani? D (2013) Female mice lacking cholecystokinin 1 receptors have compromised neurogenesis, and fewer dopaminergic cells in the olfactory bulb. Front Cell Neurosci 7: 13. PubMed: 23459364.
[67]  Suzuki N, Bekkers JM (2007) Inhibitory interneurons in the piriform cortex. Clin Exp Pharmacol Physiol 34: 1064-1069. doi:10.1111/j.1440-1681.2007.04723.x. PubMed: 17714095.
[68]  Fung SJ, Webster MJ, Sivagnanasundaram S, Duncan C, Elashoff M et al. (2010) Expression of interneuron markers in the dorsolateral prefrontal cortex of the developing human and in schizophrenia. Am J Psychiatry 167: 1479-1488. doi:10.1176/appi.ajp.2010.09060784. PubMed: 21041246.
[69]  Celio MR (1986) Parvalbumin in most gamma-aminobutyric acid-containing neurons of the rat cerebral cortex. Science 231: 995-997. doi:10.1126/science.3945815. PubMed: 3945815.
[70]  Van Brederode JF, Mulligan KA, Hendrickson AE (1990) Calcium-binding proteins as markers for subpopulations of GABAergic neurons in monkey striate cortex. J Comp Neurol 298: 1-22. doi:10.1002/cne.902980102. PubMed: 2170466.
[71]  Hendry SH, Schwark HD, Jones EG, Yan J (1987) Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. J Neurosci 7: 1503-1519. PubMed: 3033170.
[72]  Hendry SH, Jones EG, Emson PC, Lawson DE, Heizmann CW et al. (1989) Two classes of cortical GABA neurons defined by differential calcium binding protein immunoreactivities. Exp Brain Res 76: 467-472. PubMed: 2767197.
[73]  Kosaka T, Katsumaru H, Hama K, Wu JY, Heizmann CW (1987) GABAergic neurons containing the Ca2+-binding protein parvalbumin in the rat hippocampus and dentate gyrus. Brain Res 419: 119-130. doi:10.1016/0006-8993(87)90575-0. PubMed: 3315112.
[74]  Kemppainen S, Pitk?nen A (2000) Distribution of parvalbumin, calretinin, and calbindin-D(28k) immunoreactivity in the rat amygdaloid complex and colocalization with gamma-aminobutyric acid. J Comp Neurol 426: 441-467. doi:10.1002/1096-9861(20001023)426:3. PubMed: 10992249.
[75]  Szeidemann Z, Shanabrough M, Leranth C (1995) Hypothalamic Leu-enkephalin-immunoreactive fibers terminate on calbindin-containing somatospiny cells in the lateral septal area of the rat. J Comp Neurol 358: 573-583. doi:10.1002/cne.903580410. PubMed: 7593751.
[76]  Goodson JL, Evans AK, Lindberg L (2004) Chemoarchitectonic subdivisions of the songbird septum and a comparative overview of septum chemical anatomy in jawed vertebrates. J Comp Neurol 473: 293-314. doi:10.1002/cne.20061. PubMed: 15116393.
[77]  Risold PY, Swanson LW (1997a) Connections of the rat lateral septal complex. Brain Res Brain Res Rev 24: 115-195. doi:10.1016/S0165-0173(97)00009-X. PubMed: 9385454.
[78]  Risold PY, Swanson LW (1996) Structural evidence for functional domains in the rat hippocampus. Science 272: 1484-1486. doi:10.1126/science.272.5267.1484. PubMed: 8633241.
[79]  Kubota Y, Jones EG (1993) Co-localization of two calcium binding proteins in GABA cells of rat piriform cortex. Brain Res 600: 339-344. doi:10.1016/0006-8993(93)91394-8. PubMed: 8435756.
[80]  Tóth K, Freund TF (1992) Calbindin D28k-containing nonpyramidal cells in the rat hippocampus: their immunoreactivity for GABA and projection to the medial septum. Neuroscience 49: 793-805. doi:10.1016/0306-4522(92)90357-8. PubMed: 1279455.
[81]  Holderith N, Varoqueaux F, Borhegyi Z, Leranth C (1998) Dual (excitatory and inhibitory) calretinin innervation of AMPA receptor-containing neurons in the rat lateral septum. Exp Brain Res 119: 65-72. doi:10.1007/s002210050320. PubMed: 9521537.
[82]  Winsky L, Nakata H, Martin BM, Jacobowitz DM (1989) Isolation, partial amino acid sequence, and immunohistochemical localization of a brain-specific calcium-binding protein. Proc Natl Acad Sci U S A 86: 10139-10143. doi:10.1073/pnas.86.24.10139. PubMed: 2602362.
[83]  Andressen C, Blümcke I, Celio MR (1993) Calcium-binding proteins: selective markers of nerve cells. Cell Tissue Res 271: 181-208. doi:10.1007/BF00318606. PubMed: 8453652.
[84]  Huesa G, Yá?ez J, Anadón R (2002) Calbindin and calretinin immunoreactivities in the retina of a chondrostean, Acipenser baeri. Cell Tissue Res 309: 355-360. doi:10.1007/s00441-002-0608-x. PubMed: 12195291.
[85]  Demeulemeester H, Arckens L, Vandesande F, Orban GA, Heizmann CW et al. (1991) Calcium binding proteins and neuropeptides as molecular markers of GABAergic interneurons in the cat visual cortex. Exp Brain Res 84: 538-544. PubMed: 1864325.
[86]  Demeulemeester H, Vandesande F, Orban GA, Brandon C, Vanderhaeghen JJ (1988) Heterogeneity of GABAergic cells in cat visual cortex. J Neurosci 8: 988-1000. PubMed: 2894415.
[87]  Sloviter RS (1989) Calcium-binding protein (calbindin-D28k) and parvalbumin immunocytochemistry: localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity. J Comp Neurol 280: 183-196. doi:10.1002/cne.902800203. PubMed: 2925892.
[88]  Freund TF, Gulyás AI, Acsády L, G?rcs T, Tóth K (1990) Serotonergic control of the hippocampus via local inhibitory interneurons. Proc Natl Acad Sci U S A 87: 8501-8505. doi:10.1073/pnas.87.21.8501. PubMed: 1700433.
[89]  Kawaguchi Y, Katsumaru H, Kosaka T, Heizmann CW, Hama K (1987) Fast spiking cells in rat hippocampus (CA1 region) contain the calcium-binding protein parvalbumin. Brain Res 416: 369-374. doi:10.1016/0006-8993(87)90921-8. PubMed: 3304536.
[90]  Gao B, Moore RY (1996) The sexually dimorphic nucleus of the hypothalamus contains GABA neurons in rat and man. Brain Res 742: 163-171. doi:10.1016/S0006-8993(96)01005-0. PubMed: 9117390.
[91]  Tsuneoka Y, Maruyama T, Yoshida S, Nishimori K, Kato T et al. (2013) Functional, anatomical, and neurochemical differentiation of medial preoptic area subregions in relation to maternal behavior in the mouse. J Comp Neurol 521: 1633-1663. doi:10.1002/cne.23251. PubMed: 23124836.
[92]  Tobiansky DJ, Roma PG, Hattori T, Will RG, Nutsch VL et al. (2013) The medial preoptic area modulates cocaine-induced activity in female rats. Behav Neurosci 127: 293-302. doi:10.1037/a0031949. PubMed: 23565937.
[93]  Lewis ME, Krause RG 2nd, Roberts-Lewis JM (1988) Recent developments in the use of synthetic oligonucleotides for in situ hybridization histochemistry. Synapse 2: 308-316. doi:10.1002/syn.890020321. PubMed: 3062833.
[94]  Baldino FJ, Lewis ME (1989) Non-radioactive in situ hybridization histochemistry with digoxigenin-dUTP labeled oligonucleotides. PM Conn. New York: Academic Press. pp. 282-292.
[95]  Bobrow MN, Harris TD, Shaughnessy KJ, Litt GJ (1989) Catalyzed reporter deposition, a novel method of signal amplification. Application to immunoassays. J Immunol Methods 125: 279-285. doi:10.1016/0022-1759(89)90104-X. PubMed: 2558138.
[96]  Chao J, DeBiasio R, Zhu Z, Giuliano KA, Schmidt BF (1996) Immunofluorescence signal amplification by the enzyme-catalyzed deposition of a fluorescent reporter substrate (CARD). Cytometry 23: 48-53. doi:10.1002/(SICI)1097-0320(19960101)23:1. PubMed: 14650440.
[97]  Raap AK, van de Corput MP, Vervenne RA, van Gijlswijk RP, Tanke HJ et al. (1995) Ultra-sensitive FISH using peroxidase-mediated deposition of biotin- or fluorochrome tyramides. Hum Mol Genet 4: 529-534. doi:10.1093/hmg/4.4.529. PubMed: 7633400.
[98]  Macechko PT, Krueger L, Hirsch B, Erlandsen SL (1997) Comparison of immunologic amplification vs enzymatic deposition of fluorochrome-conjugated tyramide as detection systems for FISH. J Histochem Cytochem 45: 359-363. doi:10.1177/002215549704500303. PubMed: 9071317.
[99]  Zaidi AU, Enomoto H, Milbrandt J, Roth KA (2000) Dual fluorescent in situ hybridization and immunohistochemical detection with tyramide signal amplification. J Histochem Cytochem 48: 1369-1375. doi:10.1177/002215540004801007. PubMed: 10990490.
[100]  Zhao C, Driessen T, Gammie SC (2012) Glutamic acid decarboxylase 65 and 67 expression in the lateral septum is up-regulated in association with the postpartum period in mice. Brain Res 1470: 35-44. doi:10.1016/j.brainres.2012.06.002. PubMed: 22750123.
[101]  Drazen DL, Klein SL, Burnett AL, Wallach EE, Crone JK et al. (1999) Reproductive function in female mice lacking the gene for endothelial nitric oxide synthase. Nitric Oxide 3: 366-374. doi:10.1006/niox.1999.0251. PubMed: 10534440.
[102]  Marcondes FK, Bianchi FJ, Tanno AP (2002) Determination of the estrous cycle phases of rats: some helpful considerations. Braz J Biol 62: 609-614. doi:10.1590/S1519-69842002000400008. PubMed: 12659010.
[103]  Zhao C, Fujinaga R, Yanai A, Kokubu K, Takeshita Y et al. (2008) Sex-steroidal regulation of aromatase mRNA expression in adult male rat brain: a quantitative non-radioactive in situ hybridization study. Cell Tissue Res 332: 381-391. doi:10.1007/s00441-008-0606-8. PubMed: 18401595.
[104]  Trembleau A, Bloom FE (1995) Enhanced sensitivity for light and electron microscopic in situ hybridization with multiple simultaneous non-radioactive oligodeoxynucleotide probes. J Histochem Cytochem 43: 829-841. doi:10.1177/43.8.7622844. PubMed: 7622844.
[105]  Gra?a P, Huesa G, Anadón R, Yá?ez J (2012) Immunohistochemical study of the distribution of calcium binding proteins in the brain of a chondrostean (Acipenser baeri). J Comp Neurol 520: 2086-2122. doi:10.1002/cne.23030. PubMed: 22173872.
[106]  Mészár Z, Girard F, Saper CB, Celio MR (2012) The lateral hypothalamic parvalbumin-immunoreactive (PV1) nucleus in rodents. J Comp Neurol 520: 798-815. doi:10.1002/cne.22789. PubMed: 22020694.
[107]  Kusnoor SV, Parris J, Muly EC, Morgan JI, Deutch AY (2010) Extracerebellar role for Cerebellin1: modulation of dendritic spine density and synapses in striatal medium spiny neurons. J Comp Neurol 518: 2525-2537. PubMed: 20503425.
[108]  Paxinos G, Franklin KBJ (2001) The Mouse Brain in Stereotaxic Coordinates. 2nd edn. San Diego: Academic Press.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133