全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

ε Subunit of Bacillus subtilis F1-ATPase Relieves MgADP Inhibition

DOI: 10.1371/journal.pone.0073888

Full-Text   Cite this paper   Add to My Lib

Abstract:

MgADP inhibition, which is considered as a part of the regulatory system of ATP synthase, is a well-known process common to all F1-ATPases, a soluble component of ATP synthase. The entrapment of inhibitory MgADP at catalytic sites terminates catalysis. Regulation by the ε subunit is a common mechanism among F1-ATPases from bacteria and plants. The relationship between these two forms of regulatory mechanisms is obscure because it is difficult to distinguish which is active at a particular moment. Here, using F1-ATPase from Bacillus subtilis (BF1), which is strongly affected by MgADP inhibition, we can distinguish MgADP inhibition from regulation by the ε subunit. The ε subunit did not inhibit but activated BF1. We conclude that the ε subunit relieves BF1 from MgADP inhibition.

References

[1]  Boyer PD (1997) The ATP synthase: a splendid molecular machine. Annu Rev Biochem 66: 717–749. doi:10.1146/annurev.biochem.66.1.717. PubMed: 9242922.
[2]  Kinosita K Jr, Yasuda R, Noji H (2000) F1-ATPase: a highly efficient rotary ATP machine. Essays Biochem 35: 3–18. PubMed: 12471886.
[3]  Yoshida M, Muneyuki E, Hisabori T (2001) ATP synthase: a marvellous rotary engine of the cell. Nat Rev Mol Cell Biol 2: 669–677. doi:10.1038/35088558. PubMed: 11533724.
[4]  Senior AE, Nadanaciva S, Weber J (2002) The molecular mechanism of ATP synthesis by F1Fo-ATP synthase. Biochim Biophys Acta 1553: 188–211. doi:10.1016/S0005-2728(02)00185-8. PubMed: 11997128.
[5]  Noji H, Yasuda R, Yoshida M, Kinosita K Jr (1997) Direct observation of the rotation of F1-ATPase. Nature 386: 299–302. doi:10.1038/386299a0. PubMed: 9069291.
[6]  Yasuda R, Noji H, Kinosita K Jr, Yoshida M (1998) F1-ATPase is a highly efficient molecular motor that rotates with discrete 120 degree steps. Cell 93: 1117–1124. doi:10.1016/S0092-8674(00)81456-7. PubMed: 9657145.
[7]  Smith JB, Sternweis PC, Heppel LA (1975) Partial purification of active δ and ε subunits of the membrane ATPase from Escherichia coli. J Supramol Struct 3: 248–255. doi:10.1002/jss.400030307. PubMed: 127087.
[8]  Laget PP, Smith JB (1979) Inhibitory properties of endogenous subunit ε in the Escherichia coli F1 ATPase. Arch Biochem Biophys 197: 83–89. doi:10.1016/0003-9861(79)90222-4. PubMed: 161698.
[9]  Ort DR, Oxborough K (1992) In situ regulation of chloroplast coupling factor activity. Annu Rev Plant Physiol Plant Mol Biol 43: 269–291. doi:10.1146/annurev.pp.43.060192.001413.
[10]  Kato Y, Matsui T, Tanaka N, Muneyuki E, Hisabori T et al. (1997) Thermophilic F1-ATPase is activated without dissociation of an endogenous inhibitor, ε subunit. J Biol Chem 272: 24906–24912. doi:10.1074/jbc.272.40.24906. PubMed: 9312092.
[11]  Rodgers AJW, Wilce MCJ (2000) Structure of the γ-ε complex of ATP synthase. Nat Struct Biol 7: 1051–1054. doi:10.1038/80975. PubMed: 11062562.
[12]  Tsunoda SP, Rodgers AJW, Aggeler R, Wilce MCJ, Yoshida M et al. (2001) Large conformational changes of the ε subunit in the bacterial F1Fo ATP synthase provide a ratchet action to regulate this rotary motor enzyme. Proc Natl Acad Sci U S A 98: 6560–6564. doi:10.1073/pnas.111128098. PubMed: 11381110.
[13]  Suzuki T, Murakami T, Iino R, Suzuki J, Ono S et al. (2003) FoF1-ATPase/synthase is geared to the synthesis mode by conformational rearrangement of ε subunit in response to proton motive force and ADP/ATP balance. J Biol Chem 278: 46840–46846. doi:10.1074/jbc.M307165200. PubMed: 12881515.
[14]  Iino R, Murakami T, Iizuka S, Kato-Yamada Y, Suzuki T et al. (2005) Real time monitoring of conformational dynamics of the ε subunit in F1-ATPase. J Biol Chem 280: 40130–40134. doi:10.1074/jbc.M506160200. PubMed: 16203732.
[15]  Feniouk BA, Kato-Yamada Y, Yoshida M, Suzuki T (2010) Conformational transitions of subunit ε in ATP synthase from thermophilic Bacillus PS3. Biophys J 98: 434–442. doi:10.1016/j.bpj.2009.12.2357. PubMed: 20141757.
[16]  Cingolani G, Duncan TM (2011) Structure of the ATP synthase catalytic complex (F1) from Escherichia coli in an autoinhibited conformation. Nat Struct Mol Biol 18: 701–707. doi:10.1038/nsmb.2058. PubMed: 21602818.
[17]  Kato S, Yoshida M, Kato-Yamada Y (2007) Role of the ε subunit of thermophilic F1-ATPase as a sensor for ATP. J Biol Chem 282: 37618–37623. doi:10.1074/jbc.M707509200. PubMed: 17933866.
[18]  Kadoya F, Kato S, Watanabe K, Kato-Yamada Y (2011) ATP binding to the ε subunit of thermophilic ATP synthase is crucial for efficient coupling of ATPase and H+ pump activities. Biochem J 437: 135–140. doi:10.1042/BJ20110443. PubMed: 21510843.
[19]  Vasilyeva EA, Minkov IB, Fitin AF, Vinogradov AD (1982) Kinetic mechanism of mitochondrial adenosine triphosphatase. ADP-specific inhibition as revealed by the steady-state kinetics. Biochem J 202: 9–14. PubMed: 6211173.
[20]  Vasilyeva EA, Minkov IB, Fitin AF, Vinogradov AD (1982) Kinetic mechanism of mitochondrial adenosine triphosphatase. Inhibition by azide and activation by sulphite. Biochem J 202: 15–23. PubMed: 6211171.
[21]  Zhou J-M, Xue ZX, Du ZY, Melese T, Boyer PD (1988) Relationship of tightly bound ADP and ATP to control and catalysis by chloroplast ATP synthase. Biochemistry 27: 5129–5135. doi:10.1021/bi00414a027. PubMed: 2901855.
[22]  Milgrom YM, Ehler LL, Boyer PD (1991) The characteristics and effect on catalysis of nucleotide binding to noncatalytic sites of chloroplast F1-ATPase. J Biol Chem 266: 11551–11558. PubMed: 1828802.
[23]  Milgrom YM, Cross RL (1993) Nucleotide binding sites on beef heart mitochondrial F1-ATPase. Cooperative interactions between sites and specificity of noncatalytic sites. J Biol Chem 268: 23179–23185. PubMed: 8226836.
[24]  Hyndman DJ, Milgrom YM, Bramhall EA, Cross RL (1994) Nucleotide-binding sites on Escherichia coli F1-ATPase, Specificity of noncatalytic sites and inhibition at a catalytic sites by MgADP. J Biol Chem 269: 28871–28877. PubMed: 7961847.
[25]  Jault J-M, Matsui T, Jault FM, Kaibara C, Muneyuki E et al. (1995) The α3β3γ complex of the F1-ATPase from thermophilic Bacillus. PS 3 containing the αD261N substitution fails to dissociate inhibitory MgADP from a catalytic site when ATP binds to noncatalytic sites. Biochemistry 34: 16412–16418.
[26]  Matsui T, Muneyuki E, Honda M, Allison WS, Dou C et al. (1997) Catalytic activity of the α3β3γ complex of F1-ATPase without noncatalytic nucleotide binding site. J Biol Chem 272: 8215–8221. doi:10.1074/jbc.272.13.8215. PubMed: 9079639.
[27]  Hirono-Hara Y, Noji H, Nishiura M, Muneyuki E, Hara KY et al. (2001) Pause and rotation of F1-ATPase during catalysis. Proc Natl Acad Sci U S A 98: 13649–13654. doi:10.1073/pnas.241365698. PubMed: 11707579.
[28]  Konno H, Murakami-Fuse T, Fujii F, Koyama F, Ueoka-Nakanishi H et al. (2006) The regulator of the F1 motor: inhibition of rotation of cyanobacterial F1-ATPase by the ε subunit. EMBO J 25: 4596–4604. doi:10.1038/sj.emboj.7601348. PubMed: 16977308.
[29]  Tsumuraya M, Furuike S, Adachi K, Kinosita K Jr, Yoshida M (2009) Effect of ε subunit on the rotation of thermophilic Bacillus F1-ATPase. FEBS Lett 583: 1121–1126. doi:10.1016/j.febslet.2009.02.038. PubMed: 19265694.
[30]  Haruyama T, Hirono-Hara Y, Kato-Yamada Y (2010) Inhibition of thermophilic F1-ATPase by the ε subunit takes different path from the ADP-Mg inhibition. Biophysics 6: 59–65. doi:10.2142/biophysics.6.59.
[31]  Feniouk BA, Suzuki T, Yoshida M (2007) Regulatory interplay between proton motive force, ADP, phosphate, and subunit ε in bacterial ATP synthase. J Biol Chem 282: 764–772. PubMed: 17092944.
[32]  Jault J-M, Dou C, Grodsky NB, Matsui T, Yoshida M et al. (1996) The α3β3γ subcomplex of the F1-ATPase from the thermophilic Bacillus. PS 3 with the βT165S substitution does not entrap inhibitory MgADP in a catalytic site during turnover. J. Biol. Chem. 271: 28818-28824.
[33]  Yasuno T, Muneyuki E, Yoshida M, Kato-Yamada Y (2009) Modulation of nucleotide binding to the catalytic sites of thermophilic F1-ATPase by the ε subunit: implication for the role of the ε subunit in ATP synthesis. Biochem Biophys Res Commun 390: 230–234. doi:10.1016/j.bbrc.2009.09.092. PubMed: 19785990.
[34]  Sekiya M, Hosokawa H, Nakanishi-Matsui M, Al-Shawi MK, Nakamoto RK et al. (2010) Single molecule behavior of inhibited and active states of Escherichia coli ATP synthase F1 rotation. J Biol Chem 285: 42058-42067. doi:10.1074/jbc.M110.176701. PubMed: 20974856.
[35]  Konno H, Isu A, Kim Y, Murakami-Fuse T, Sugano Y et al. (2011) Characterization of the relationship between ADP- and ε-induced inhibition in cyanobacterial F1-ATPase. J Biol Chem 286: 13423-13429. doi:10.1074/jbc.M110.155986. PubMed: 21345803.
[36]  Hicks DB, Krulwich TA (1987) Purification and characterization of the F1 ATPase from Bacillus subtilis and its uncoupler-resistant mutant derivatives. J Bacteriol 169: 4743–4749. PubMed: 2888751.
[37]  Hicks DB, Cohen DM, Krulwich TA (1994) Reconstitution of energy-linked activities of the solubilized F1Fo ATP synthase from Bacillus subtilis. J Bacteriol 176: 4192–4195. PubMed: 8021203.
[38]  Santana M, Ionescu MS, Vertes A, Longin R, Kunst F et al. (1994) Bacillus subtilis FoF1 ATPase: DNA sequence of the atp operon and characterization of atp mutants. J Bacteriol 176: 6802–6811. PubMed: 7961438.
[39]  Matsui T, Yoshida M (1995) Expression of the wild-type and the Cys-/Trp-less α3β3γ complex of thermophilic F1-ATPase in Escherichia coli. Biochim Biophys Acta 1231: 139–146. doi:10.1016/0005-2728(95)00070-Y. PubMed: 7662694.
[40]  Higuchi R, Krummel B, Saiki RK (1988) A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res 16: 7351–7367. doi:10.1093/nar/16.15.7351. PubMed: 3045756.
[41]  Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene (Amst.)77: 51–59.
[42]  Kato-Yamada Y, Yoshida M (2003) Isolated ε subunit of thermophilic F1-ATPase binds ATP. J Biol Chem 278: 36013–36016. doi:10.1074/jbc.M306140200. PubMed: 12837747.
[43]  Hisabori T, Muneyuki E, Odaka M, Yokoyama K, Mochizuki K et al. (1992) Single site hydrolysis of 2′, 3′-O-(2,4,6-trinitrophenyl)-ATP by the F1-ATPase from thermophilic bacterium. PS 3 is accelerated by the chase-addition of excess ATP. J. Biol. Chem. 267: 4551–4556.
[44]  Stiggall DL, Galante YM, Hatefi Y (1979) Preparation and properties of complex V. Methods Enzymol 55: 308–315. doi:10.1016/0076-6879(79)55036-8. PubMed: 156835.
[45]  Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254. doi:10.1016/0003-2697(76)90527-3. PubMed: 942051.
[46]  Laemmli UK. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. doi:10.1038/227680a0. PubMed: 5432063.
[47]  Kato Y, Sasayama T, Muneyuki E, Yoshida M (1995) Analysis of time-dependent change of Escherichia coli F1-ATPase activity and its relationship with apparent negative Cooperativity. Biochim Biophys Acta 1231: 275–281. doi:10.1016/0005-2728(95)00087-Y. PubMed: 7578215.
[48]  Bald D, Muneyuki E, Amano T, Kruip J, Hisabori T et al. (1999) The noncatalytic site-deficient α3β3γ subcomplex and FoF1-ATP synthase can continuously catalyse ATP hydrolysis when Pi is present. Eur J Biochem 262: 563–568. doi:10.1046/j.1432-1327.1999.00410.x. PubMed: 10336643.
[49]  Bald D, Amano T, Muneyuki E, Pitard B, Rigaud JL et al. (1998) ATP synthesis by FoF1-ATP synthase independent of noncatalytic nucleotide binding sites and insensitive to azide inhibition. J Biol Chem 273: 865–870. doi:10.1074/jbc.273.2.865. PubMed: 9422743.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133