We review the recent advances in the development of semiconductor disk lasers (SDLs) producing yellow-orange and mid-IR radiation. In particular, we focus on presenting the fabrication challenges and characteristics of high-power GaInNAs- and GaSb-based gain mirrors. These two material systems have recently sparked a new wave of interest in developing SDLs for high-impact applications in medicine, spectroscopy, or astronomy. The dilute nitride (GaInNAs) gain mirrors enable emission of more than 11?W of output power at a wavelength range of 1180–1200?nm and subsequent intracavity frequency doubling to generate yellow-orange radiation with power exceeding 7?W. The GaSb gain mirrors have been used to leverage the advantages offered by SDLs to the 2–3?μm wavelength range. Most recently, GaSb-based SDLs incorporating semiconductor saturable absorber mirrors were used to generate optical pulses as short as 384?fs at 2?μm, the shortest pulses obtained from a semiconductor laser at this wavelength range. 1. Introduction Conceptually, the idea of an optically pumped semiconductor disk laser (OP-SDLs) was suggested already in 1966 by Basov et al. in a paper describing lasers with radiating mirrors [1]. However, it was not until the 1990s that the concept was acknowledged and the first working devices were reported [2–6]. In its essence, the concept of an OP-SDL is based on using an optically pumped semiconductor gain structure (i.e., gain mirror) with vertical emission. We note here that in addition to OP-SDL, also acronyms like OP-VECSEL (optically pumped vertical external-cavity surface-emitting laser) and OPSL (optically pumped semiconductor laser) are commonly used in literature to describe the same type of laser. The laser resonator is typically formed between the gain mirror and one or more external-cavity mirrors. In many ways, this laser architecture is similar to that of traditional solid state disk lasers. An essential difference is that in traditional solid state lasers the emission wavelength is dependent on certain fixed atomic transitions in a host material, whereas in an SDL the wavelength can be specifically tailored in a wide range by engineering the composition of the semiconductor material. This added wavelength versatility is one of the key factors that have made SDLs successful also commercially. Technically speaking, the OP-SDL can be considered as a brightness and wavelength converter; it converts low brightness light from multimode diode pump lasers into a high brightness single mode beam at a wavelength that is longer than the pump
References
[1]
N. Basov, O. Bogdankevich, and A. Grasyuk, “9B4—semiconductor lasers with radiating mirrors,” Quantum Electronics, vol. 2, no. 9, pp. 594–597, 1966.
[2]
W. B. Jiang, S. R. Friberg, H. Iwamura, and Y. Yamamoto, “High powers and subpicosecond pulses from an external-cavity surface-emitting InGaAs/InP multiple quantum well laser,” Applied Physics Letters, vol. 58, no. 8, pp. 807–809, 1991.
[3]
H. Q. Le, S. Di Cecca, and A. Mooradian, “Scalable high-power optically pumped GaAs laser,” Applied Physics Letters, vol. 58, no. 18, pp. 1967–1969, 1991.
[4]
W. H. Xiang, S. R. Friberg, K. Watanabe et al., “Sub-100 femtosecond pulses from an external-cavity surface-emitting InGaAs/InP multiple quantum well laser with soliton-effect compression,” Applied Physics Letters, vol. 59, no. 17, pp. 2076–2078, 1991.
[5]
D. C. Sun, S. R. Friberg, K. Watanabe, S. MacHida, Y. Horikoshi, and Y. Yamamoto, “High power and high efficiency vertical cavity surface emitting GaAs laser,” Applied Physics Letters, vol. 61, no. 13, pp. 1502–1503, 1992.
[6]
W. B. Jiang, R. Mirin, and J. E. Bowers, “Mode-locked GaAs vertical cavity surface emitting lasers,” Applied Physics Letters, vol. 60, no. 6, pp. 677–679, 1992.
[7]
C. Symonds, J. Dion, I. Sagnes et al., “High performance 1.55?μm vertical external cavity surface emitting laser with broadband integrated dielectric-metal mirror,” Electronics Letters, vol. 40, no. 12, pp. 734–735, 2004.
[8]
D. Lorenser, H. J. Unold, D. J. H. C. Maas et al., “Towards wafer-scale integration of high repetition rate passively mode-locked surface-emitting semiconductor lasers,” Applied Physics B, vol. 79, no. 8, pp. 927–932, 2004.
[9]
M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 5, no. 3, pp. 561–573, 1999.
[10]
E. J. Saarinen, A. H?rk?nen, S. Suomalainen, and O. G. Okhotnikov, “Power scalable semiconductor disk laser using multiple gain cavity,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO '07), 2007.
[11]
L. Fan, M. Fallahi, J. Hader et al., “Multichip vertical-external-cavity surface-emitting lasers: a coherent power scaling scheme,” Optics Letters, vol. 31, no. 24, pp. 3612–3614, 2006.
[12]
T. J. Ochalski, A. De Burea, G. Huyet et al., “Passively modelocked bi-directional vertical external ring cavity surface emitting laser,” in Proceedings of the Conference on Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics (CLEO/QELS '08), May 2008.
[13]
J. E. Hastie, J. M. Hopkins, C. W. Jeon et al., “Microchip vertical external cavity surface emitting lasers,” Electronics Letters, vol. 39, no. 18, pp. 1324–1326, 2003.
[14]
S. A. Smith, J. M. Hopkins, J. E. Hastie et al., “Diamond-microchip GaInNAs vertical external-cavity surface-emitting laser operating CW at 1315?nm,” Electronics Letters, vol. 40, no. 15, pp. 935–936, 2004.
[15]
N. Laurand, C. L. Lee, E. Gu, J. E. Hastie, S. Calvez, and M. D. Dawson, “Microlensed microchip VECSEL,” Optics Express, vol. 15, no. 15, pp. 9341–9346, 2007.
[16]
S. W. Corzine, R. S. Geels, J. W. Scott, R. H. Yan, and L. A. Coldren, “Design of Fabry-Perot surface-emitting lasers with a periodic gain structure,” IEEE Journal of Quantum Electronics, vol. 25, no. 6, pp. 1513–1524, 1989.
[17]
M. Schmid, S. Benchabane, F. Torabi-Goudarzi, R. Abram, A. I. Ferguson, and E. Riis, “Optical in-well pumping of a vertical-external-cavity surface-emitting laser,” Applied Physics Letters, vol. 84, no. 24, pp. 4860–4862, 2004.
[18]
S. S. Beyertt, U. Brauch, F. Demaria et al., “Efficient gallium-arsenide disk laser,” IEEE Journal of Quantum Electronics, vol. 43, no. 10, pp. 869–875, 2007.
[19]
N. Schulz, M. Rattunde, C. Ritzenthaler et al., “Resonant optical in-well pumping of an (AlGaIn)(AsSb)-based vertical-external-cavity surface-emitting laser emitting at 2.35?μm,” Applied Physics Letters, vol. 91, no. 9, Article ID 091113, 2007.
[20]
V. M. Korpij?rvi, T. Leinonen, J. Puustinen, A. H?rk?nen, and M. D. Guina, “11?W single gain-chip dilute nitride disk laser emitting around 1180?nm,” Optics Express, vol. 18, no. 25, pp. 25633–25641, 2010.
[21]
A. J. Kemp, G. J. Valentine, J. M. Hopkins et al., “Thermal management in vertical-external-cavity surface-emitting lasers: finite-element analysis of a heatspreader approach,” IEEE Journal of Quantum Electronics, vol. 41, no. 2, pp. 148–155, 2005.
[22]
W. J. Alford, T. D. Raymond, and A. A. Allerman, “High power and good beam quality at 980?nm from a vertical external-cavity surface-emitting laser,” Journal of the Optical Society of America B, vol. 19, no. 4, pp. 663–666, 2002.
[23]
J. E. Hastie, J. M. Hopkins, S. Calvez et al., “0.5-W single transverse-mode operation of an 850?nm diode-pumped surface-emitting semiconductor laser,” IEEE Photonics Technology Letters, vol. 15, no. 7, pp. 894–896, 2003.
[24]
Z. L. Liau, “Semiconductor wafer bonding via liquid capillarity,” Applied Physics Letters, vol. 77, no. 5, pp. 651–653, 2000.
[25]
M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photonics Technology Letters, vol. 9, no. 8, pp. 1063–1065, 1997.
[26]
J. P. Perez, A. Laurain, L. Cerutti, I. Sagnes, and A. Garnache, “Technologies for thermal management of mid-IR Sb-based surface emitting lasers,” Semiconductor Science and Technology, vol. 25, no. 4, Article ID 045021, 2010.
[27]
A. R. Clawson, “Guide to references on III-V semiconductor chemical etching,” Materials Science and Engineering R, vol. 31, no. 1, pp. 1–438, 2001.
[28]
A. J. Maclean, A. J. Kemp, S. Calvez et al., “Continuous tuning and efficient intracavity second-harmonic generation in a semiconductor disk laser with an intracavity diamond heatspreader,” IEEE Journal of Quantum Electronics, vol. 44, no. 3, pp. 216–225, 2008.
[29]
T. L. Wang, Y. Kaneda, J. M. Yarborough et al., “High-power optically pumped semiconductor laser at 1040?nm,” IEEE Photonics Technology Letters, vol. 22, no. 9, Article ID 5422654, pp. 661–663, 2010.
[30]
J. Chilla, Q. Shu, H. Zhou, E. Weiss, M. Reed, and L. Spinelli, “Recent advances in optically pumped semiconductor lasers,” in Solid State Lasers XVI: Technology and Devices, vol. 6451 of Proceedings of SPIE, San Jose, Calif, USA, 2007.
[31]
H. Lindberg, M. Strassner, E. Gerster, J. Bengtsson, and A. Larsson, “Thermal management of optically pumped long-wavelength InP-based semiconductor disk lasers,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 11, no. 5, pp. 1126–1134, 2005.
[32]
A. J. Kemp, A. J. MacLean, J. E. Hastie et al., “Thermal lensing, thermal management and transverse mode control in microchip VECSELs,” Applied Physics B, vol. 83, no. 2, pp. 189–194, 2006.
[33]
A. J. Maclean, R. B. Birch, P. W. Roth, A. J. Kemp, and D. Burns, “Limits on efficiency and power scaling in semiconductor disk lasers with diamond heatspreaders,” Journal of the Optical Society of America B, vol. 26, no. 12, pp. 2228–2236, 2009.
[34]
A. R. Zakharian, J. Hader, J. V. Moloney, S. W. Koch, P. Brick, and S. Lutgen, “Experimental and theoretical analysis of optically pumped semiconductor disk lasers,” Applied Physics Letters, vol. 83, no. 7, pp. 1313–1315, 2003.
[35]
L. Fan, M. Fallahi, J. T. Murray et al., “Tunable high-power high-brightness linearly polarized vertical-external-cavity surface-emitting lasers,” Applied Physics Letters, vol. 88, no. 2, Article ID 021105, pp. 1–3, 2006.
[36]
L. Fan, M. Fallahi, A. R. Zakharian et al., “Extended tunability in a two-chip VECSEL,” IEEE Photonics Technology Letters, vol. 19, no. 8, pp. 544–546, 2007.
[37]
J. Paajaste, S. Suomalainen, R. Koskinen, A. H?rk?nen, M. Guina, and M. Pessa, “High-power and broadly tunable GaSb-based optically pumped VECSELs emitting near 2?μm,” Journal of Crystal Growth, vol. 311, no. 7, pp. 1917–1919, 2009.
[38]
C. Borgentun, J. Bengtsson, A. Larsson, F. Demaria, A. Hein, and P. Unger, “Optimization of a broadband gain element for a widely tunable high-power semiconductor disk laser,” IEEE Photonics Technology Letters, vol. 22, no. 13, Article ID 5451056, pp. 978–980, 2010.
[39]
M. A. Holm, D. Burns, A. I. Ferguson, and M. D. Dawson, “Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,” IEEE Photonics Technology Letters, vol. 11, no. 12, pp. 1551–1553, 1999.
[40]
H. Lindberg, A. Larsson, and M. Strassner, “Single-frequency operation of a high-power, long-wavelength semiconductor disk laser,” Optics Letters, vol. 30, no. 17, pp. 2260–2262, 2005.
[41]
A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache, “Multiwatt-power highly-coherent compact single-frequency tunable vertical-external-cavity-surface-emitting-semiconductor-laser,” Optics Express, vol. 18, no. 14, pp. 14627–14636, 2010.
[42]
B. Rudin, A. Rutz, M. Hoffmann et al., “Highly efficient optically pumped vertical-emitting semiconductor laser with more than 20?W average output power in a fundamental transverse mode,” Optics Letters, vol. 33, no. 22, pp. 2719–2721, 2008.
[43]
J. Chilla, S. Butterworth, A. Zeitschel et al., “High power optically pumped semiconductor lasers,” in Solid State Lasers XIII: Technology and Devices, vol. 5332 of Proceedings of SPIE, pp. 143–150, San Jose, Calif, USA, 2004.
[44]
A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos et al., “A passively mode-locked external-cavity semiconductor laser emitting 60?fs pulses,” Nature Photonics, vol. 3, no. 12, pp. 729–731, 2009.
[45]
P. Klopp, F. Saas, M. Zorn, M. Weyers, and U. Griebner, “290?fs pulses from a semiconductor disk laser,” Optics Express, vol. 16, no. 8, pp. 5770–5775, 2008.
[46]
A. Aschwanden, D. Lorenser, H. J. Unold, R. Paschotta, E. Gini, and U. Keller, “2.1?W picosecond passively mode-locked external-cavity semiconductor laser,” Optics Letters, vol. 30, no. 3, pp. 272–274, 2005.
[47]
B. Rudin, V. J. Wittwer, D. J. H. C. Maas et al., “High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4?W average power,” Optics Express, vol. 18, no. 26, pp. 27582–27588, 2010.
[48]
D. Lorenser, D. J. H. C. Maas, H. J. Unold et al., “50?GHz passively mode-locked surface-emitting semiconductor laser with 100?mW average output power,” IEEE Journal of Quantum Electronics, vol. 42, no. 8, Article ID 01658136, pp. 838–847, 2006.
[49]
U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Physics Reports, vol. 429, no. 2, pp. 67–120, 2006.
[50]
W. Zhang, A. McDonald, T. Ackemann, E. Riis, and G. McConnell, “Femtosecond synchronously in-well pumped vertical-external-cavity surface-emitting laser,” Optics Express, vol. 18, no. 1, pp. 187–192, 2010.
[51]
J. Rautiainen, V. M. Korpij?rvi, J. Puustinen, M. Guina, and O. G. Okhotnikov, “Passively mode-locked GaInNAs disk laser operating at 1220?nm,” Optics Express, vol. 16, no. 20, pp. 15964–15969, 2008.
[52]
A. Rutz, V. Liverini, D. J. H. C. Maas et al., “Passively modelocked GaInNAs VECSEL at centre wavelength around 1.3μm,” Electronics Letters, vol. 42, no. 16, pp. 926–927, 2006.
[53]
A. Khadour, S. Bouchoule, G. Aubin, J. C. Harmand, J. Decobert, and J. L. Oudar, “Ultrashort pulse generation from 1.56?μm modelocked VECSEL at room temperature,” Optics Express, vol. 18, no. 19, pp. 19902–19913, 2010.
[54]
J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Applied Physics Letters, vol. 89, no. 6, Article ID 061114, 2006.
[55]
S. H. Park, J. Kim, H. Jeon et al., “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Applied Physics Letters, vol. 83, no. 11, pp. 2121–2123, 2003.
[56]
J. Y. Kim, S. Cho, S. J. Lim et al., “Efficient blue lasers based on gain structure optimizing of vertical-external-cavity surface-emitting laser with second harmonic generation,” Journal of Applied Physics, vol. 101, no. 3, Article ID 033103, 2007.
[57]
J. Lee, S. Lee, T. Kim, and Y. Park, “7?W high-efficiency continuous-wave green light generation by intracavity frequency doubling of an end-pumped vertical external-cavity surface emitting semiconductor laser,” Applied Physics Letters, vol. 89, no. 24, Article ID 241107, 2006.
[58]
S. Hilbich, W. Seelert, V. Ostroumov et al., “New wavelengths in the yellow orange range between 545 nm to 580?nm generated by an intracavity frequency-doubled Optically Pumped Semiconductor Laser,” in Solid State Lasers XVI: Technology and Devices, vol. 6451 of Proceedings of SPIE, San Jose, Calif, USA, 2007.
[59]
A. H?rk?nen, J. Rautiainen, M. Guina et al., “High power frequency doubled GaInNAs semiconductor disk laser emitting at 615?nm,” Optics Express, vol. 15, no. 6, pp. 3224–3229, 2007.
[60]
M. I. Müller, N. Linder, C. Karnutsch et al., “Optically pumped semiconductor thin-disk laser with external cavity operating at 660?nm,” in Vertical-Cavity Surface-Emitting Lasers VI, vol. 4649 of Proceedings of SPIE, pp. 265–271, San Jose, Calif, USA, 2002.
[61]
K. S. Kim, J. R. Yoo, S. H. Cho et al., “1060?nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature,” Applied Physics Letters, vol. 88, no. 9, Article ID 091107, 2006.
[62]
J. Konttinen, A. H?rk?nen, P. Tuomisto et al., “High-power (>1 W) dilute nitride semiconductor disk laser emitting at 1240?nm,” New Journal of Physics, vol. 9, article 140, 2007.
[63]
J. M. Hopkins, S. A. Smith, C. W. Jeon et al., “0.6?W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32?μm,” Electronics Letters, vol. 40, no. 1, pp. 30–31, 2004.
[64]
H. Lindberg, M. Strassner, E. Gerster, and A. Larsson, “0.8?W optically pumped vertical external cavity surface emitting laser operating CW at 1550?nm,” Electronics Letters, vol. 40, no. 10, pp. 601–602, 2004.
[65]
J. Nikkinen, J. Paajaste, R. Koskinen, S. Suomalainen, and O. G. Okhotnikov, “GaSb-based semiconductor disk laser with 130?nm tuning range at 2.5?μm,” IEEE Photonics Technology Letters, vol. 23, no. 12, Article ID 5723696, pp. 777–779, 2011.
[66]
B. R?sener, M. Rattunde, R. Moser et al., “Continuous-wave room-temperature operation of a 2.8?μm GaSb-based semiconductor disk laser,” Optics Letters, vol. 36, no. 3, pp. 319–321, 2011.
[67]
M. Rahim, A. Khiar, F. Felder, M. Fill, and H. Zogg, “4.5?μm wavelength vertical external cavity surface emitting laser operating above room temperature,” Applied Physics Letters, vol. 94, no. 20, Article ID 201112, 2009.
[68]
M. Rahim, F. Felder, M. Fill, and H. Zogg, “Optically pumped 5?μm IV-VI VECSEL with Al-heat spreader,” Optics Letters, vol. 33, no. 24, pp. 3010–3012, 2008.
[69]
Y. Kaneda, J. M. Yarborough, L. Li et al., “Continuous-wave all-solid-state 244?nm deep-ultraviolet laser source by fourth-harmonic generation of an optically pumped semiconductor laser using inanexternalresonator,” Optics Letters, vol. 33, no. 15, pp. 1705–1707, 2008.
[70]
T. Leinonen, J. Puustinen, V. -M. Korpij?rvi, A. H?rk?nen, M. Guina, and R. J. Epstein, “Generation of high power (>7?W) yellow-orange radiation by frequency doubling of GaInNAs-based semiconductor disk laser,” in Proceedings of the Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC '11), 2011.
[71]
J. Rautiainen, A. H?rk?nen, V.-M. Korpij?rvi et al., “Red and UV generation using frequency-converted GaInNAs-based semiconductor disk laser,” in Proceedings of the Conference on Lasers and Electro-Optics and 2009 Conference on Quantum Electronics and Laser Science Conference (CLEO/QELS '09), 2009.
[72]
J. Paajaste, R. Koskinen, J. Nikkinen, S. Suomalainen, and O. G. Okhotnikov, “Power scalable 2.5?μm (AlGaIn)(AsSb) semiconductor disk laser grown by molecular beam epitaxy,” Journal of Crystal Growth, vol. 323, pp. 454–456, 2010.
[73]
J. M. Hopkins, N. Hempler, B. R?sener et al., “5?W Mid-IR optically-pumped semiconductor disk laser,” in Proceedings of the Conference on Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics (CLEO/QELS '08), May 2008.
[74]
A. Rantam?ki, A. Sirbu, A. Mereuta, E. Kapon, and O. G. Okhotnikov, “3?W of 650?nm red emission by frequency doubling of wafer-fused semiconductor disk laser,” Optics Express, vol. 18, no. 21, pp. 21645–21650, 2010.
[75]
J. Lyytik?inen, J. Rautiainen, A. Sirbu et al., “High-power 1.48?μm wafer-fused optically pumped semiconductor disk laser,” vol. 23, no. 13, pp. 917–919, 2011.
[76]
J. Rautiainen, J. Lyytik?inen, A. Sirbu et al., “2.6?W optically-pumped semiconductor disk laser operating at 1.57-μm using wafer fusion,” Optics Express, vol. 16, no. 26, pp. 21881–21886, 2008.
[77]
B. Lambert, Y. Toudic, Y. Rouillard et al., “High reflectivity 1.55?μm (Al)GaAsSb/AlAsSb Bragg reflector lattice matched on InP substrates,” Applied Physics Letters, vol. 66, pp. 442–444, 1995.
[78]
I. F. L. Dias, B. Nabet, A. Kohl, J. L. Benchimol, and J. C. Harmand, “Electrical and optical characteristics of n-type-doped distributed bragg mirrors on InP,” IEEE Photonics Technology Letters, vol. 10, no. 6, pp. 763–765, 1998.
[79]
Y. Imajo, A. Kasukawa, S. Kashiwa, and H. Okamoto, “GaInAsP/InP semiconductor multilayer reflector grwon by metalorganic chemical vapor deposition and its application to surface emitting laser diode,” Japanese Journal of Applied Physics, vol. 29, no. 7, pp. 1130–1132, 1990.
[80]
J. H. Baek, I. H. Choi, B. Lee, W. S. Han, and H. K. Cho, “Precise control of 1.55?μm vertical-cavity surface-emitting laser structure with InAlGaAs/InAlAs Bragg reflectors by in situ growth monitoring,” Applied Physics Letters, vol. 75, no. 11, pp. 1500–1502, 1999.
[81]
E. Gerster, I. Ecker, S. Lorch, C. Hahn, S. Menzel, and P. Unger, “Orange-emitting frequency-doubled GaAsSb/GaAs semiconductor disk laser,” Journal of Applied Physics, vol. 94, no. 12, pp. 7397–7401, 2003.
[82]
J. Lyytik?inen, J. Rautiainen, L. Toikkanen et al., “1.3-μm optically-pumped semiconductor disk laser by wafer fusion,” Optics Express, vol. 17, no. 11, pp. 9047–9052, 2009.
[83]
T. D. Germann, A. Strittmatter, U. W. Pohl et al., “Quantum-dot semiconductor disk lasers,” Journal of Crystal Growth, vol. 310, no. 23, pp. 5182–5186, 2008.
[84]
J. Rautiainen, I. Krestnikov, M. Butkus, E. U. Rafailov, and O. G. Okhotnikov, “Optically pumped semiconductor quantum dot disk laser operating at 1180?nm,” Optics Letters, vol. 35, no. 5, pp. 694–696, 2010.
[85]
L. Fan, C. Hessenius, M. Fallahi et al., “Highly strained InGaAsGaAs multiwatt vertical-external-cavity surface-emitting laser emitting around 1170?nm,” Applied Physics Letters, vol. 91, no. 13, Article ID 131114, 2007.
[86]
K. J. Beernink, P. K. York, J. J. Coleman, R. G. Waters, J. Kim, and C. M. Wayman, “Characterization of InGaAs-GaAs strained-layer lasers with quantum wells near the critical thickness,” Applied Physics Letters, vol. 55, no. 21, pp. 2167–2169, 1989.
[87]
G. Jaschke, R. Averbeck, L. Geelhaar, and H. Riechert, “Low threshold InGaAsN/GaAs lasers beyond 1500?nm,” Journal of Crystal Growth, vol. 278, no. 1–4, pp. 224–228, 2005.
[88]
W. Walukiewicz, W. Shan, J. Wu, K. M. Yu, and J. W. Ager, “Band anticrossing and related electronic structure in III-N-V alloys,” in Dilute Nitride Semiconductors, M. Henin, Ed., pp. 325–359, Elsevier, 2005.
[89]
E. P. O’Reilly, A. Lindsay, S. Fahy, S. Tomic, and P. J. Klar, “A tight-binding based analysis of the band anti-crossing model and its application in Ga(In)NAs alloys,” in Dilute Nitride Semiconductors, M. Henini, Ed., pp. 361–391, Elsevier, 2005.
[90]
W. Walukiewicz, K. Alberi, J. Wu, W. Shan, K. M. Yu, and J. W. Ager, Electronic Band Structure of Highly Mismatched Semiconductor Alloys, Springer, 2008.
[91]
I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” Journal of Applied Physics, vol. 94, no. 6, pp. 3675–3696, 2003.
[92]
D. J. Palmer, P. M. Smowton, P. Blood, J. Y. Yeh, L. J. Mawst, and N. Tansu, “Effect of nitrogen on gain and efficiency in InGaAsN quantum-well lasers,” Applied Physics Letters, vol. 86, no. 7, Article ID 071121, pp. 1–3, 2005.
[93]
W. M. McGee, R. S. Williams, M. J. Ashwin et al., “Structure, morphology, and optical properties of GaxIn1-x N0.05 As0.95 quantum wells: influence of the growth mechanism,” Physical Review B, vol. 76, no. 8, Article ID 085309, 2007.
[94]
J. Miguel-Sánchez, A. Guzmán, J. M. Ulloa, A. Hierro, and E. Mu?oz, “Effect of nitrogen ions on the properties of InGaAsN quantum wells grown by plasma-assisted molecular beam epitaxy,” IEE Proceedings: Optoelectronics, vol. 151, no. 5, pp. 305–308, 2004.
[95]
A. Y. Egorov, D. Bernklau, D. Livshits, V. Ustinov, Z. I. Alferov, and H. Riechert, “High power CW operation of InGaAsN lasers at 1.3?μm,” Electronics Letters, vol. 35, no. 19, pp. 1643–1644, 1999.
[96]
O. Ambacher, “Growth and applications of group III-nitrides,” Journal of Physics D, vol. 31, no. 20, pp. 2653–2710, 1998.
[97]
H. Carrère, A. Arnoult, A. Ricard, and E. Bedel-Pereira, “RF plasma investigations for plasma-assisted MBE growth of (Ga,In)(As,N) materials,” Journal of Crystal Growth, vol. 243, no. 2, pp. 295–301, 2002.
[98]
E. M. Pavelescu, T. Hakkarainen, V. D. S. Dhaka et al., “Influence of arsenic pressure on photoluminescence and structural properties of GaInNAs/GaAs quantum wells grown by molecular beam epitaxy,” Journal of Crystal Growth, vol. 281, no. 2–4, pp. 249–254, 2005.
[99]
S. Giet, A. J. Kemp, D. Burns et al., “Comparison of thermal management techniques for semiconductor disk lasers,” in Solid State Lasers XVII: Technology and Devices, vol. 6871 of Proceedings of SPIE, San Jose, Calif, USA, 2008.
[100]
A. H?rk?nen, M. Guina, O. Okhotnikov et al., “1-W antimonide-based vertical external cavity surface emitting laser operating at 2-μm,” Optics Express, vol. 14, no. 14, pp. 6479–6484, 2006.
[101]
J. M. Hopkins, N. Hempler, B. R?sener et al., “High-power, (AlGaIn)(AsSb) semiconductor disk laser at 2.0?μm,” Optics Letters, vol. 33, no. 2, pp. 201–203, 2008.
[102]
J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem et al., “Mid-IR supercontinuum generation from nonsilica microstruetured optical fibers,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 13, no. 3, pp. 738–749, 2007.
[103]
A. H?rk?nen, J. Paajaste, S. Suomalainen et al., “Picosecond passively mode-locked GaSb-based semiconductor disk laser operating at 2?μm,” Optics Letters, vol. 35, no. 24, pp. 4090–4092, 2010.
[104]
A. H?rk?nen, C. Grebing, J. Paajaste et al., “Modelocked GaSb disk laser producing 384?fs pulses at 2?m wavelength,” Electronics Letters, vol. 47, no. 7, pp. 454–456, 2011.
[105]
L. Shterengas, G. Belenky, T. Hosoda, G. Kipshidze, and S. Suchalkin, “Continuous wave operation of diode lasers at 3.36 μm at ,” Applied Physics Letters, vol. 93, no. 1, Article ID 011103, 2008.
[106]
T. Hosoda, G. Kipshidze, L. Shterengas, and G. Belenky, “Diode lasers emitting near 3.44?μm in continuous-wave regime at 300?K,” Electronics Letters, vol. 46, no. 21, pp. 1455–1457, 2010.
[107]
Y. Y. Lai, J. M. Yarborough, Y. Kaneda et al., “340-W peak power from a GaSb 2-μm optically pumped semiconductor laser (OPSL) grown mismatched on GaAs,” IEEE Photonics Technology Letters, vol. 22, no. 16, Article ID 5512584, pp. 1253–1255, 2010.
[108]
U. Keller, K. J. Weingarten, F. X. K?rtner et al., “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 2, no. 3, pp. 435–453, 1996.
[109]
R. Koskinen, S. Suomalainen, J. Paajaste et al., “Highly nonlinear GaSb-based saturable absorber mirrors,” in Nonlinear Optics and Applications III, vol. 7354 of Proceedings of SPIE, 2009.
[110]
J. Paajaste, S. Suomalainen, R. Koskinen, A. H?rk?nen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2?μm semiconductor disk lasers,” Physica Status Solidi (C), Special Issue: 38th International Symposium on Compound Semiconductors (ISCS 2011),, vol. 9, no. 2, pp. 294–297, 2012.
[111]
L. Cerutti, A. Garnache, A. Ouvrard, and F. Genty, “High temperature continuous wave operation of Sb-based vertical external cavity surface emitting laser near 2.3 μm,” Journal of Crystal Growth, vol. 268, no. 1-2, pp. 128–134, 2004.
[112]
M. Rattunde, N. Schulz, C. Ritzenthaler et al., “High brightness GaSb-based optically pumped semiconductor disk lasers at 2.3?μm,” in Quantum Sensing and Nanophotonic Devices IV, vol. 6479 of Proceedings of SPIE, 2007.
[113]
A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100?mW average power,” Applied Physics Letters, vol. 80, no. 21, pp. 3892–3894, 2002.
[114]
H. Lindberg, M. Sadeghi, M. Westlund et al., “Mode locking a 1550?nm semiconductor disk laser by using a GaInNAs saturable absorber,” Optics Letters, vol. 30, no. 20, pp. 2793–2795, 2005.
[115]
J. Lindfors, J. Paajaste, R. Koskinen, A. H?rk?nen, S. Suomalainen, and M. Guina, “Highly selective etch stop layer for GaSb substrate removal,” in Proceedings of the 16th Semiconducting and Insulating Materials Conference (SIMC-XVI '11), 2011.
[116]
N. Yokouchi, T. Miyamoto, T. Uchida, Y. Inaba, F. Koyama, and K. Iga, “40 angstrom continuous tuning of a GaInAsP/InP vertical-cavity surface-emitting laser using an external mirror,” IEEE Photonics Technology Letters, vol. 4, no. 7, pp. 701–703, 1992.
[117]
P. Kreuter, B. Witzigmann, D. J. H. C. Maas, Y. Barbarin, T. Südmeyer, and U. Keller, “On the design of electrically pumped vertical-external-cavity surface-emitting lasers,” Applied Physics B, vol. 91, no. 2, pp. 257–264, 2008.
[118]
J. R. Orchard, D. T.D. Childs, L. C. Lin, B. J. Stevens, D. M. Williams, and R. A. Hogg, “Design rules and characterisation of electrically pumped vertical external cavity surface emitting lasers,” Japanese Journal of Applied Physics, vol. 50, no. 4, Article ID 04DG05, 2011.
[119]
W. Schwarz, “Cavity optimization of electrically pumped VECSELs,” II Annual Report, Institute of Optoelectronics, Ulm University, 2006.
[120]
M. Jansen, B. D. Cantos, G. P. Carey et al., “Visible laser and laser array sources for projection displays,” in Liquid Crystal Materials, Devices, and Applications XI, vol. 6135 of Proceedings of SPIE, 2006.
[121]
A. Mooradian, S. Antikichev, B. Cantos et al., “High power extended vertical cavity surface emitting diode lasers and arrays and their applications,” in Proceedings of the Micro-Optics Conference, pp. 1–4, 2005.
[122]
J. G. McInerney, A. Mooradian, A. Lewis et al., “High-power surface emitting semiconductor laser with extended vertical compound cavity,” Electronics Letters, vol. 39, no. 6, pp. 523–525, 2003.
[123]
A. H?rk?nen, A. Bachmann, S. Arafin et al., “2.34?μm electrically-pumped VECSEL with buried tunnel junction,” in Semiconductor Lasers and Laser Dynamics IV, vol. 7720 of Proceedings of SPIE, 2010.