[1] | Shulgin B, Stone L, Agur Z (1998) Pulse vaccination strategy in the SIR epidemic model. Bull Math Biol 60: 1123–1148.
|
[2] | Bauch CT, Earn DJD (2004) Vaccination and the theory of games. Proc Natl Acad Sci USA 101: 13391–13394.
|
[3] | Bauch CT (2005) Imitation dynamics predict vaccinating behaviour. Proc R Soc B 272: 1669–1675.
|
[4] | Perisic A, Bauch CT (2009) A simulation analysis to characterize the dynamics of vaccinating behaviour on contact networks. BMC Infect Dis 9: 77.
|
[5] | Manfredi P, Posta PD, d'Onofrio A, Salinelli E, Centrone F, et al. (2010) Optimal vaccination choice, vaccination games, and rational exemption: an appraisal. Vaccine 28: 98–109.
|
[6] | Funk S, Salathé M, Jansen VAA (2010) Modelling the influence of human behavior on the spread of infectious diseases: a review. J R Soc Interface 7: 1247–1256.
|
[7] | Wang B, Cao L, Suzuki H, Aihara K (2012) Safety-information-driven human mobility patterns with metapopulation epidemic dynamics. Sci Rep 2: 887.
|
[8] | Miller MA, Viboud C, Balinska M, Simonsen L (2009) The signature features of influenza pandemics-implications for policy. N Engl J Med 360: 2595–2598.
|
[9] | Wallinga J, van Boven M, Lipsitch M (2010) Optimizing infectious disease interventions during an emerging epidemic. Proc Natl Acad Sci USA 107: 923–928.
|
[10] | Medlock J, Galvani AP (2009) Optimizing influenza vaccine distribution. Science 325: 1705.
|
[11] | Liu J, Xia S (2011) Toward effective vaccine deployment: a systematic study. J Med Syst 35: 1153–1164.
|
[12] | Becker NG, Starczak DN (1997) Optimal vaccination strategies for a community of households. Math Biosci 139: 117–132.
|
[13] | Hill AN, Longini Jr IM (2003) The critical vaccination fraction for heterogeneous epidemic models. Math Biosci 181: 85–106.
|
[14] | Bansal S, Pourbohloul B, Meyers LA (2006) A comparative analysis of influenza vaccination programs. PLoS Med 3: e387.
|
[15] | Tuite AR, Fisman DN, Kwong JC, Greer AL (2010) Optimal pandemic influenza vaccine allocation strategies for the canadian population. PLoS ONE 5: e10520.
|
[16] | Klepac P, Laxminarayan R, Grenfell BT (2011) Synthesizing epidemiological and economic optima for control of immunizing infections. Proc Natl Acad Sci USA 108: 14366.
|
[17] | Patel R, Longini Jr IM, Halloran ME (2005) Finding optimal vaccination strategies for pandemic influenza using genetic algorithms. J Theor Biol 234: 201–212.
|
[18] | Manski CF (2010) Vaccination with partial knowledge of external effectiveness. Proc Natl Acad Sci USA 107: 3953–3960.
|
[19] | Latora V, Nyamba A, Simpore J, Sylvette B, Diane S, et al. (2006) Network of sexual contacts and sexually transmitted HIV infection in burkina faso. J Med Virol 78: 724–729.
|
[20] | Pastor-Satorras R, Vespignani A (2001) Epidemic spreading in scale-free networks. Phys Rev Lett 86: 3200–3203.
|
[21] | Pastor-Satorras R, Vespignani A (2001) Epidemic dynamics and endemic states in complex networks. Phys Rev E 63: 066117.
|
[22] | Pastor-Satorra R, Vespignani A (2002) Immunization of complex networks. Phys Rev E 65: 036104.
|
[23] | Cohen R, Havlin S, ben Avraham D (2003) Efficient immunization strategies for computer networks and populations. Phys Rev Lett 91: 247901.
|
[24] | Wang B, Tang H, Guo C, Xiu Z (2006) Entropy optimization of scale-free networks robustness to random failures. Physica A 363: 591–596.
|
[25] | Forster GA, Gilligan CA (2007) Optimizing the control of disease infestations at the landscape scale. Proc Natl Acad Sci USA 104: 4984–4989.
|
[26] | Kleczkowski A, Olés K, Gudowska-Nowak E, Gilligan CA (2012) Searching for the most cost effective strategy for controlling epidemics spreading on regular and small-world networks. J R Soc Interface 9: 158–169.
|
[27] | Tanaka G, Morino K, Aihara K (2012) Dynamical robustness in complex networks: the crucial role of low-degree nodes. Sci Rep 2: 232.
|
[28] | Gandon S, Mackinnon MJ, Nee S, Read AF (2001) Imperfect vaccines and the evolution of pathogen virulence. Nature 414: 751–756.
|
[29] | Hoffman SL (1996) Malaria vaccine development: a multi-immune response approaches. Washington, D.C.: American Society of Microbiology.
|
[30] | Blower S, Schwartz EJ, Mills J (2003) Forecasting the future of HIV epidemics: the impact of antiretroviral therapies and imperfect vaccines. AIDS Rev 5: 113–125.
|
[31] | Diekmann O, Heesterbeek JA, Metz JA (1990) On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J Math Biol 28: 365–382.
|
[32] | Cohen R, Erez K, ben Avraham D, Havlin S (2001) Breakdown of the internet under intentional attack. Phys Rev Lett 86: 3682–3685.
|
[33] | Glover F (1990) Tabu search: A tutorial. Interfaces 20: 74–94.
|
[34] | Molloy M, Reed B (1995) A critical point for random graphs with a given degree sequence. Random Struct Algor 6: 161–179.
|
[35] | Liljeros F, Edling CR, Amaral LAN, Stanley HE, Aberg Y (2001) The web of human sexual contacts. Nature 411: 907–908.
|
[36] | Huerta R, Tsimring LS (2002) Contact tracing and epidemics control in social networks. Phys Rev E 66: 056115.
|
[37] | Newman MEJ (2002) Assortative mixing in networks. Phys Rev Lett 89: 208701.
|
[38] | Glover F (1989) Tabu search-part I. ORSA Journal on Computing. 1: 190–206.
|
[39] | Glover F (1990) Tabu search-part II. ORSA Journal on Computing 2: 4–32.
|
[40] | Ji M, Tang H (2004) Global optimizations and tabu search based on memory. Appl Math Comput 159: 449–457.
|
[41] | Wang B, Zhou T, Xiu ZL, Kim BJ (2007) Optimal synchronizability of networks. Eur Phys J B 60: 89–95.
|