全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Evaluating Roles of Nodes in Optimal Allocation of Vaccines with Economic Considerations

DOI: 10.1371/journal.pone.0070793

Full-Text   Cite this paper   Add to My Lib

Abstract:

Since the allocation of vaccines is often constrained by limited resources, designing an economical vaccination strategy is a fundamental goal of the epidemiological modelling. In this study, with the objective of reducing costs, we determine the optimal allocation of vaccines for a general class of infectious diseases that spread mainly via contact. We use an optimization routine to identify the roles of nodes with distinct degrees as depending on the cost of treatment to that of vaccination (relative cost of treatment). The optimal allocation drives vaccination priority to medium-degree nodes at a low relative cost of treatment or to high-degree nodes at a high relative cost of treatment. According to the presented results, we may adjust the vaccination priority in the face of an endemic situation.

References

[1]  Shulgin B, Stone L, Agur Z (1998) Pulse vaccination strategy in the SIR epidemic model. Bull Math Biol 60: 1123–1148.
[2]  Bauch CT, Earn DJD (2004) Vaccination and the theory of games. Proc Natl Acad Sci USA 101: 13391–13394.
[3]  Bauch CT (2005) Imitation dynamics predict vaccinating behaviour. Proc R Soc B 272: 1669–1675.
[4]  Perisic A, Bauch CT (2009) A simulation analysis to characterize the dynamics of vaccinating behaviour on contact networks. BMC Infect Dis 9: 77.
[5]  Manfredi P, Posta PD, d'Onofrio A, Salinelli E, Centrone F, et al. (2010) Optimal vaccination choice, vaccination games, and rational exemption: an appraisal. Vaccine 28: 98–109.
[6]  Funk S, Salathé M, Jansen VAA (2010) Modelling the influence of human behavior on the spread of infectious diseases: a review. J R Soc Interface 7: 1247–1256.
[7]  Wang B, Cao L, Suzuki H, Aihara K (2012) Safety-information-driven human mobility patterns with metapopulation epidemic dynamics. Sci Rep 2: 887.
[8]  Miller MA, Viboud C, Balinska M, Simonsen L (2009) The signature features of influenza pandemics-implications for policy. N Engl J Med 360: 2595–2598.
[9]  Wallinga J, van Boven M, Lipsitch M (2010) Optimizing infectious disease interventions during an emerging epidemic. Proc Natl Acad Sci USA 107: 923–928.
[10]  Medlock J, Galvani AP (2009) Optimizing influenza vaccine distribution. Science 325: 1705.
[11]  Liu J, Xia S (2011) Toward effective vaccine deployment: a systematic study. J Med Syst 35: 1153–1164.
[12]  Becker NG, Starczak DN (1997) Optimal vaccination strategies for a community of households. Math Biosci 139: 117–132.
[13]  Hill AN, Longini Jr IM (2003) The critical vaccination fraction for heterogeneous epidemic models. Math Biosci 181: 85–106.
[14]  Bansal S, Pourbohloul B, Meyers LA (2006) A comparative analysis of influenza vaccination programs. PLoS Med 3: e387.
[15]  Tuite AR, Fisman DN, Kwong JC, Greer AL (2010) Optimal pandemic influenza vaccine allocation strategies for the canadian population. PLoS ONE 5: e10520.
[16]  Klepac P, Laxminarayan R, Grenfell BT (2011) Synthesizing epidemiological and economic optima for control of immunizing infections. Proc Natl Acad Sci USA 108: 14366.
[17]  Patel R, Longini Jr IM, Halloran ME (2005) Finding optimal vaccination strategies for pandemic influenza using genetic algorithms. J Theor Biol 234: 201–212.
[18]  Manski CF (2010) Vaccination with partial knowledge of external effectiveness. Proc Natl Acad Sci USA 107: 3953–3960.
[19]  Latora V, Nyamba A, Simpore J, Sylvette B, Diane S, et al. (2006) Network of sexual contacts and sexually transmitted HIV infection in burkina faso. J Med Virol 78: 724–729.
[20]  Pastor-Satorras R, Vespignani A (2001) Epidemic spreading in scale-free networks. Phys Rev Lett 86: 3200–3203.
[21]  Pastor-Satorras R, Vespignani A (2001) Epidemic dynamics and endemic states in complex networks. Phys Rev E 63: 066117.
[22]  Pastor-Satorra R, Vespignani A (2002) Immunization of complex networks. Phys Rev E 65: 036104.
[23]  Cohen R, Havlin S, ben Avraham D (2003) Efficient immunization strategies for computer networks and populations. Phys Rev Lett 91: 247901.
[24]  Wang B, Tang H, Guo C, Xiu Z (2006) Entropy optimization of scale-free networks robustness to random failures. Physica A 363: 591–596.
[25]  Forster GA, Gilligan CA (2007) Optimizing the control of disease infestations at the landscape scale. Proc Natl Acad Sci USA 104: 4984–4989.
[26]  Kleczkowski A, Olés K, Gudowska-Nowak E, Gilligan CA (2012) Searching for the most cost effective strategy for controlling epidemics spreading on regular and small-world networks. J R Soc Interface 9: 158–169.
[27]  Tanaka G, Morino K, Aihara K (2012) Dynamical robustness in complex networks: the crucial role of low-degree nodes. Sci Rep 2: 232.
[28]  Gandon S, Mackinnon MJ, Nee S, Read AF (2001) Imperfect vaccines and the evolution of pathogen virulence. Nature 414: 751–756.
[29]  Hoffman SL (1996) Malaria vaccine development: a multi-immune response approaches. Washington, D.C.: American Society of Microbiology.
[30]  Blower S, Schwartz EJ, Mills J (2003) Forecasting the future of HIV epidemics: the impact of antiretroviral therapies and imperfect vaccines. AIDS Rev 5: 113–125.
[31]  Diekmann O, Heesterbeek JA, Metz JA (1990) On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J Math Biol 28: 365–382.
[32]  Cohen R, Erez K, ben Avraham D, Havlin S (2001) Breakdown of the internet under intentional attack. Phys Rev Lett 86: 3682–3685.
[33]  Glover F (1990) Tabu search: A tutorial. Interfaces 20: 74–94.
[34]  Molloy M, Reed B (1995) A critical point for random graphs with a given degree sequence. Random Struct Algor 6: 161–179.
[35]  Liljeros F, Edling CR, Amaral LAN, Stanley HE, Aberg Y (2001) The web of human sexual contacts. Nature 411: 907–908.
[36]  Huerta R, Tsimring LS (2002) Contact tracing and epidemics control in social networks. Phys Rev E 66: 056115.
[37]  Newman MEJ (2002) Assortative mixing in networks. Phys Rev Lett 89: 208701.
[38]  Glover F (1989) Tabu search-part I. ORSA Journal on Computing. 1: 190–206.
[39]  Glover F (1990) Tabu search-part II. ORSA Journal on Computing 2: 4–32.
[40]  Ji M, Tang H (2004) Global optimizations and tabu search based on memory. Appl Math Comput 159: 449–457.
[41]  Wang B, Zhou T, Xiu ZL, Kim BJ (2007) Optimal synchronizability of networks. Eur Phys J B 60: 89–95.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133