全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Genetic Imprint of Vaccination on Simian/Human Immunodeficiency Virus Type 1 Transmitted Viral Genomes in Rhesus Macaques

DOI: 10.1371/journal.pone.0070814

Full-Text   Cite this paper   Add to My Lib

Abstract:

Understanding the genetic, antigenic and structural changes that occur during HIV-1 infection in response to pre-existing immunity will facilitate current efforts to develop an HIV-1 vaccine. Much is known about HIV-1 variation at the population level but little with regard to specific changes occurring in the envelope glycoprotein within a host in response to immune pressure elicited by antibodies. The aim of this study was to track and map specific early genetic changes occurring in the viral envelope gene following vaccination using a highly controlled viral challenge setting in the SHIV macaque model. We generated 449 full-length env sequences from vaccinees, and 63 from the virus inoculum. Analysis revealed a different pattern in the distribution and frequency of mutations in the regions of the envelope gene targeted by the vaccine as well as different patterns of diversification between animals in the na?ve control group and vaccinees. Given the high stringency of the model it is remarkable that we were able to identify genetic changes associated with the vaccination. This work provides insight into the characterization of breakthrough viral populations in less than fully efficacious vaccines and illustrates the value of HIV-1 Env SHIV challenge model in macaques to unravel the mechanisms driving HIV-1 envelope genetic diversity in the presence of vaccine induced-responses.

References

[1]  Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J, et al. (2009) Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. The New England journal of medicine 361: 2209–2220.
[2]  Karasavvas N, Billings E, Rao M, Williams C, Zolla-Pazner S, et al. (2012) The Thai Phase III HIV Type 1 Vaccine Trial (RV144) Regimen Induces Antibodies That Target Conserved Regions Within the V2 Loop of gp120. AIDS Res Hum Retroviruses 28: 1444–1457.
[3]  Haynes BF, Gilbert PB, McElrath MJ, Zolla-Pazner S, Tomaras GD, et al. (2012) Immune-correlates analysis of an HIV-1 vaccine efficacy trial. The New England journal of medicine 366: 1275–1286.
[4]  Baba TW, Liska V, Hofmann-Lehmann R, Vlasak J, Xu W, et al. (2000) Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection. Nature medicine 6: 200–206.
[5]  Gauduin MC, Parren PW, Weir R, Barbas CF, Burton DR, et al. (1997) Passive immunization with a human monoclonal antibody protects hu-PBL-SCID mice against challenge by primary isolates of HIV-1. Nature medicine 3: 1389–1393.
[6]  Hofmann-Lehmann R, Vlasak J, Rasmussen RA, Smith BA, Baba TW, et al. (2001) Postnatal passive immunization of neonatal macaques with a triple combination of human monoclonal antibodies against oral simian-human immunodeficiency virus challenge. J Virol 75: 7470–7480.
[7]  Mascola JR, Stiegler G, VanCott TC, Katinger H, Carpenter CB, et al. (2000) Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nature medicine 6: 207–210.
[8]  Mascola JR, Lewis MG, Stiegler G, Harris D, VanCott TC, et al. (1999) Protection of Macaques against pathogenic simian/human immunodeficiency virus 89.6PD by passive transfer of neutralizing antibodies. J Virol 73: 4009–4018.
[9]  Parren PW, Marx PA, Hessell AJ, Luckay A, Harouse J, et al. (2001) Antibody protects macaques against vaginal challenge with a pathogenic R5 simian/human immunodeficiency virus at serum levels giving complete neutralization in vitro. J Virol 75: 8340–8347.
[10]  Shibata R, Igarashi T, Haigwood N, Buckler-White A, Ogert R, et al. (1999) Neutralizing antibody directed against the HIV-1 envelope glycoprotein can completely block HIV-1/SIV chimeric virus infections of macaque monkeys. Nature medicine 5: 204–210.
[11]  Burton DR, Stanfield RL, Wilson IA (2005) Antibody vs. HIV in a clash of evolutionary titans. Proc Natl Acad Sci U S A 102: 14943–14948.
[12]  Stamatatos L, Morris L, Burton DR, Mascola JR (2009) Neutralizing antibodies generated during natural HIV-1 infection: good news for an HIV-1 vaccine? Nature medicine 15: 866–870.
[13]  Rong R, Li B, Lynch RM, Haaland RE, Murphy MK, et al. (2009) Escape from autologous neutralizing antibodies in acute/early subtype C HIV-1 infection requires multiple pathways. PLoS Pathog 5: e1000594.
[14]  Cao Y, Qin L, Zhang L, Safrit J, Ho DD (1995) Virologic and immunologic characterization of long-term survivors of human immunodeficiency virus type 1 infection. The New England journal of medicine 332: 201–208.
[15]  Blay WM, Gnanakaran S, Foley B, Doria-Rose NA, Korber BT, et al. (2006) Consistent patterns of change during the divergence of human immunodeficiency virus type 1 envelope from that of the inoculated virus in simian/human immunodeficiency virus-infected macaques. J Virol 80: 999–1014.
[16]  Basavapathruni A, Yeh WW, Coffey RT, Whitney JB, Hraber PT, et al. (2010) Envelope vaccination shapes viral envelope evolution following simian immunodeficiency virus infection in rhesus monkeys. Journal of virology 84: 953–963.
[17]  Rolland M, Tovanabutra S, deCamp AC, Frahm N, Gilbert PB, et al. (2011) Genetic impact of vaccination on breakthrough HIV-1 sequences from the STEP trial. Nature medicine 17: 366–371.
[18]  Bar KJ, Tsao CY, Iyer SS, Decker JM, Yang Y, et al. (2012) Early Low-Titer Neutralizing Antibodies Impede HIV-1 Replication and Select for Virus Escape. PLoS pathogens 8: e1002721.
[19]  Rolland M, Edlefsen PT, Larsen BB, Tovanabutra S, Sanders-Buell E, et al.. (2012) Increased HIV-1 vaccine efficacy against viruses with genetic signatures in Env V2. Nature.
[20]  Montefiori D, Sattentau Q, Flores J, Esparza J, Mascola J (2007) Antibody-Based HIV-1 Vaccines: Recent Developments and Future Directions. PLoS medicine 4: e348.
[21]  Deeks SG, Schweighardt B, Wrin T, Galovich J, Hoh R, et al. (2006) Neutralizing antibody responses against autologous and heterologous viruses in acute versus chronic human immunodeficiency virus (HIV) infection: evidence for a constraint on the ability of HIV to completely evade neutralizing antibody responses. J Virol 80: 6155–6164.
[22]  Draenert R, Allen TM, Liu Y, Wrin T, Chappey C, et al. (2006) Constraints on HIV-1 evolution and immunodominance revealed in monozygotic adult twins infected with the same virus. The Journal of experimental medicine 203: 529–539.
[23]  Delport W, Scheffler K, Seoighe C (2008) Frequent toggling between alternative amino acids is driven by selection in HIV-1. PLoS pathogens 4: e1000242.
[24]  Harouse JM, Gettie A, Tan RC, Blanchard J, Cheng-Mayer C (1999) Distinct pathogenic sequela in rhesus macaques infected with CCR5 or CXCR4 utilizing SHIVs. Science 284: 816–819.
[25]  Bogers WM, Davis D, Baak I, Kan E, Hofman S, et al. (2008) Systemic neutralizing antibodies induced by long interval mucosally primed systemically boosted immunization correlate with protection from mucosal SHIV challenge. Virology 382: 217–225.
[26]  Boots LJ, McKenna PM, Arnold BA, Keller PM, Gorny MK, et al. (1997) Anti-human immunodeficiency virus type 1 human monoclonal antibodies that bind discontinuous epitopes in the viral glycoproteins can identify mimotopes from recombinant phage peptide display libraries. AIDS Res Hum Retroviruses 13: 1549–1559.
[27]  Zwick MB, Bonnycastle LL, Menendez A, Irving MB, Barbas CF 3rd, et al. (2001) Identification and characterization of a peptide that specifically binds the human, broadly neutralizing anti-human immunodeficiency virus type 1 antibody b12. Journal of virology 75: 6692–6699.
[28]  Parker CE, Deterding LJ, Hager-Braun C, Binley JM, Schulke N, et al. (2001) Fine definition of the epitope on the gp41 glycoprotein of human immunodeficiency virus type 1 for the neutralizing monoclonal antibody 2F5. Journal of virology 75: 10906–10911.
[29]  ten Haaft P, Verschoor EJ, Verstrepen B, Niphuis H, Dubbes R, et al. (2004) Readily acquired secondary infections of human and simian immunodeficiency viruses following single intravenous exposure in non-human primates. The Journal of general virology 85: 3735–3745.
[30]  Li M, Gao F, Mascola JR, Stamatatos L, Polonis VR, et al. (2005) Human immunodeficiency virus type 1 env clones from acute and early subtype B infections for standardized assessments of vaccine-elicited neutralizing antibodies. J Virol 79: 10108–10125.
[31]  Koopman G, Mortier D, Hofman S, Mathy N, Koutsoukos M, et al. (2008) Immune-response profiles induced by human immunodeficiency virus type 1 vaccine DNA, protein or mixed-modality immunization: increased protection from pathogenic simian-human immunodeficiency virus viraemia with protein/DNA combination. The Journal of general virology 89: 540–553.
[32]  Varela M, Landskron L, Lai RP, McKinley TJ, Bogers WM, et al. (2011) Molecular evolution analysis of the human immunodeficiency virus type 1 envelope in simian/human immunodeficiency virus-infected macaques: implications for challenge dose selection. Journal of virology 85: 10332–10345.
[33]  Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SD (2006) Automated phylogenetic detection of recombination using a genetic algorithm. Molecular biology and evolution 23: 1891–1901.
[34]  Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, et al. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59: 307–321.
[35]  Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics (Oxford, England) 22: 2688–2690.
[36]  Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 57: 758–771.
[37]  Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al.. (2011) MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular biology and evolution.
[38]  Deng W, Maust BS, Nickle DC, Learn GH, Liu Y, et al. (2010) DIVEIN: a web server to analyze phylogenies, sequence divergence, diversity, and informative sites. Biotechniques 48: 405–408.
[39]  Pond SL, Frost SD (2005) Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics (Oxford, England) 21: 2531–2533.
[40]  Zhang M, Gaschen B, Blay W, Foley B, Haigwood N, et al. (2004) Tracking global patterns of N-linked glycosylation site variation in highly variable viral glycoproteins: HIV, SIV, and HCV envelopes and influenza hemagglutinin. Glycobiology 14: 1229–1246.
[41]  Team RDC (2011) R: A Language and Environment for Statistical Computing.
[42]  Davis D, Koornstra W, Mortier D, Fagrouch Z, Verschoor EJ, et al. (2011) Protection in macaques immunized with HIV-1 candidate vaccines can be predicted using the kinetics of their neutralizing antibodies. PLoS One 6: e28974.
[43]  Barouch DH, Santra S, Schmitz JE, Kuroda MJ, Fu TM, et al. (2000) Control of viremia and prevention of clinical AIDS in rhesus monkeys by cytokine-augmented DNA vaccination. Science 290: 486–492.
[44]  Shiver JW, Fu TM, Chen L, Casimiro DR, Davies ME, et al. (2002) Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature 415: 331–335.
[45]  Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT, et al. (2008) Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc Natl Acad Sci U S A 105: 7552–7557.
[46]  Saphire EO, Montero M, Menendez A, van Houten NE, Irving MB, et al. (2007) Structure of a high-affinity “mimotope” peptide bound to HIV-1-neutralizing antibody b12 explains its inability to elicit gp120 cross-reactive antibodies. J Mol Biol 369: 696–709.
[47]  Wood N, Bhattacharya T, Keele BF, Giorgi E, Liu M, et al. (2009) HIV evolution in early infection: selection pressures, patterns of insertion and deletion, and the impact of APOBEC. PLoS pathogens 5: e1000414.
[48]  McKinley TJ, Murcia PR, Gog JR, Varela M, Wood JL (2011) A Bayesian Approach to Analyse Genetic Variation within RNA Viral Populations. PLoS computational biology 7: e1002027.
[49]  Murcia PR, Baillie GJ, Daly J, Elton D, Jervis C, et al. (2010) Intra- and interhost evolutionary dynamics of equine influenza virus. Journal of virology 84: 6943–6954.
[50]  Bunnik EM, Pisas L, van Nuenen AC, Schuitemaker H (2008) Autologous neutralizing humoral immunity and evolution of the viral envelope in the course of subtype B human immunodeficiency virus type 1 infection. Journal of virology 82: 7932–7941.
[51]  Gray ES, Moore PL, Choge IA, Decker JM, Bibollet-Ruche F, et al. (2007) Neutralizing antibody responses in acute human immunodeficiency virus type 1 subtype C infection. Journal of virology 81: 6187–6196.
[52]  Moore PL, Gray ES, Choge IA, Ranchobe N, Mlisana K, et al. (2008) The c3-v4 region is a major target of autologous neutralizing antibodies in human immunodeficiency virus type 1 subtype C infection. Journal of virology 82: 1860–1869.
[53]  Richman DD, Wrin T, Little SJ, Petropoulos CJ (2003) Rapid evolution of the neutralizing antibody response to HIV type 1 infection. Proc Natl Acad Sci U S A 100: 4144–4149.
[54]  Rong R, Bibollet-Ruche F, Mulenga J, Allen S, Blackwell JL, et al. (2007) Role of V1V2 and other human immunodeficiency virus type 1 envelope domains in resistance to autologous neutralization during clade C infection. Journal of virology 81: 1350–1359.
[55]  Rong R, Gnanakaran S, Decker JM, Bibollet-Ruche F, Taylor J, et al. (2007) Unique mutational patterns in the envelope alpha 2 amphipathic helix and acquisition of length in gp120 hypervariable domains are associated with resistance to autologous neutralization of subtype C human immunodeficiency virus type 1. Journal of virology 81: 5658–5668.
[56]  Wei X, Decker JM, Wang S, Hui H, Kappes JC, et al. (2003) Antibody neutralization and escape by HIV-1. Nature 422: 307–312.
[57]  Frost SD, Liu Y, Pond SL, Chappey C, Wrin T, et al. (2005) Characterization of human immunodeficiency virus type 1 (HIV-1) envelope variation and neutralizing antibody responses during transmission of HIV-1 subtype B. Journal of virology. 79: 6523–6527.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133