全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Natural Haemozoin Induces Expression and Release of Human Monocyte Tissue Inhibitor of Metalloproteinase-1

DOI: 10.1371/journal.pone.0071468

Full-Text   Cite this paper   Add to My Lib

Abstract:

Recently matrix metalloproteinase-9 (MMP-9) and its endogenous inhibitor (tissue inhibitor of metalloproteinase-1, TIMP-1) have been implicated in complicated malaria. In vivo, mice with cerebral malaria (CM) display high levels of both MMP-9 and TIMP-1, and in human patients TIMP-1 serum levels directly correlate with disease severity. In vitro, natural haemozoin (nHZ, malarial pigment) enhances monocyte MMP-9 expression and release. The present study analyses the effects of nHZ on TIMP-1 regulation in human adherent monocytes. nHZ induced TIMP-1 mRNA expression and protein release, and promoted TNF-α, IL-1β, and MIP-1α/CCL3 production. Blocking antibodies or recombinant cytokines abrogated or mimicked nHZ effects on TIMP-1, respectively. p38 MAPK and NF-κB inhibitors blocked all nHZ effects on TIMP-1 and pro-inflammatory molecules. Still, total gelatinolytic activity was enhanced by nHZ despite TIMP-1 induction. Collectively, these data indicate that nHZ induces inflammation-mediated expression and release of human monocyte TIMP-1 through p38 MAPK- and NF-κB-dependent mechanisms. However, TIMP-1 induction is not sufficient to counterbalance nHZ-dependent MMP-9 enhancement. Future investigation on proteinase-independent functions of TIMP-1 (i.e. cell survival promotion and growth/differentiation inhibition) is needed to clarify the role of TIMP-1 in malaria pathogenesis.

References

[1]  Khadjavi A, Giribaldi G, Prato M (2010) From control to eradication of malaria: the end of being stuck in second gear? Asian Pac J Trop Med 3: 412–420.
[2]  WHO (2011) World Malaria Report.
[3]  Higgins SJ, Kain KC, Liles WC (2011) Immunopathogenesis of falciparum malaria: implications for adjunctive therapy in the management of severe and cerebral malaria. Expert Rev Anti Infect Ther 9: 803–819.
[4]  Lucchi NW, Jain V, Wilson NO, Singh N, Udhayakumar V, et al. (2011) Potential serological biomarkers of cerebral malaria. Dis Markers 31: 327–335.
[5]  Nagase H, Woessner JF (1999) Matrix metalloproteinases. J Biol Chem 274: 21491–21494.
[6]  Cauwe B, Van den Steen PE, Opdenakker G (2007) The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Crit Rev Biochem Mol Biol 42: 113–185.
[7]  Seo JH, Guo S, Lok J, Navaratna D, Whalen MJ, et al. (2012) Neurovascular matrix metalloproteinases and the blood-brain barrier. Curr Pharm Des 18: 3645–3648.
[8]  Szklarczyk A, Stins M, Milward EA, Ryu H, Fitzsimmons C, et al. (2007) Glial activation and matrix metalloproteinase release in cerebral malaria. J Neurovirol 13: 2–10.
[9]  Prato M, Giribaldi G (2011b) Matrix Metalloproteinase-9 and Haemozoin: Wedding Rings for Human Host and Plasmodium falciparum Parasite in Complicated Malaria. J Trop Med 2011: 628435.
[10]  Geurts N, Opdenakker G, Van den Steen PE (2012) Matrix metalloproteinases as therapeutic targets in protozoan parasitic infections. Pharmacol Ther 133: 257–279.
[11]  Prato M, Giribaldi G, Polimeni M, Gallo V, Arese P (2005) Phagocytosis of hemozoin enhances matrix metalloproteinase-9 activity and TNF-alpha production in human monocytes: role of matrix metalloproteinases in the pathogenesis of falciparum malaria. J Immunol 175: 6436–6442.
[12]  Prato M, Gallo V, Giribaldi G, Arese P (2008) Phagocytosis of haemozoin (malarial pigment) enhances metalloproteinase-9 activity in human adherent monocytes: role of IL-1beta and 15-HETE. Malar J 7: 157.
[13]  Prato M, Gallo V, Giribaldi G, Aldieri E, Arese P (2010a) Role of the NF-κB transcription pathway in the haemozoin- and 15-HETE-mediated activation of matrix metalloproteinase-9 in human adherent monocytes. Cell Microbiol 12: 1780–1791.
[14]  Giribaldi G, Valente E, Khadjavi A, Polimeni M, Prato M (2011) Macrophage inflammatory protein-1alpha mediates matrix metalloproteinase-9 enhancement in human adherent monocytes fed with malarial pigment. Asian Pac J Trop Med 4: 925–930.
[15]  Prato M, D’Alessandro S, Van den Steen PE, Opdenakker G, Arese P, et al. (2011a) Natural haemozoin modulates matrix metalloproteinases and induces morphological changes in human microvascular endothelium. Cell Microbiol 13: 1275–1285.
[16]  D’Alessandro S, Basilico N, Prato M (2013) Effects of Plasmodium falciparum-infected erythrocytes on matrix metalloproteinase-9 regulation in human microvascular endothelial cells. Asian Pac J Trop Med 6: 195–199.
[17]  Geurts N, Martens E, Van Aelst I, Proost P, Opdenakker G, et al. (2008) Beta-hematin interaction with the hemopexin domain of gelatinase B/MMP-9 provokes autocatalytic processing of the propeptide, thereby priming activation by MMP-3. Biochemistry 47: 2689–2699.
[18]  Brew K, Nagase H (2010) The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta 1803: 55–71.
[19]  Van den Steen PE, Van Aelst I, Starckx S, Maskos K, Opdenakker G, et al. (2006b) Matrix metalloproteinases, tissue inhibitors of MMPs and TACE in experimental cerebral malaria. Lab Invest 86: 873–888.
[20]  Moreno A, Cabrera-Mora M, Garcia A, Orkin J, Strobert E, et al. (2013) Plasmodium coatneyi in Rhesus Macaques Replicates the Multisystemic Dysfunction of Severe Malaria in Humans. Infect Immun 81: 1889–1904.
[21]  Dietmann A, Helbok R, Lackner P, Issifou S, Lell B, et al. (2008) Matrix metalloproteinases and their tissue inhibitors (TIMPs) in Plasmodium falciparum malaria: serum levels of TIMP-1 are associated with disease severity. J Infect Dis 197: 1614–1620.
[22]  Hanemaaijer R, Koolwijk P, le Clercq L, de Vree WJ, van Hinsbergh VW (1993) Regulation of matrix metalloproteinase expression in human vein and microvascular endothelial cells. Effects of tumour necrosis factor alpha, interleukin 1 and phorbol ester. Biochem J 296 (Pt 3): 803–809.
[23]  Zhang Y, McCluskey K, Fujii K, Wahl LM (1998) Differential regulation of monocyte matrix metalloproteinase and TIMP-1 production by TNF-alpha, granulocyte-macrophage CSF, and IL-1 beta through prostaglandin-dependent and -independent mechanisms. J Immunol 161: 3071–3076.
[24]  Van den Steen PE, Van Aelst I, Hvidberg V, Piccard H, Fiten P, et al. (2006a) The hemopexin and O-glycosylated domains tune gelatinase B/MMP-9 bioavailability via inhibition and binding to cargo receptors. J Biol Chem 281: 18626–18637.
[25]  Polimeni M, Valente E, Aldieri E, Khadjavi A, Giribaldi G, et al. (2012) Haemozoin induces early cytokine-mediated lysozyme release from human monocytes through p38 MAPK- and NF-kappaB-dependent mechanisms. PLoS One 7: e39497.
[26]  Deroost K, Tyberghein A, Lays N, Noppen S, Schwarzer E, et al. (2013) Hemozoin induces lung inflammation and correlates with malaria-associated acute respiratory distress syndrome. Am J Resp Cell Mol Biol 48: 589–600.
[27]  Schwarzer E, Turrini F, Ulliers D, Giribaldi G, Ginsburg H, et al. (1992) Impairment of macrophage functions after ingestion of Plasmodium falciparum-infected erythrocytes or isolated malarial pigment. J Exp Med 176: 1033–1041.
[28]  Schwarzer E, Kuhn H, Valente E, Arese P (2003) Malaria-parasitized erythrocytes and hemozoin nonenzymatically generate large amounts of hydroxy fatty acids that inhibit monocyte functions. Blood 101: 722–728.
[29]  Were T, Davenport GC, Yamo EO, Hittner JB, Awandare GA, et al. (2009) Naturally acquired hemozoin by monocytes promotes suppression of RANTES in children with malarial anemia through an IL-10-dependent mechanism. Microbes Infect 11: 811–819.
[30]  Prato M, Gallo V, Valente E, Khadjavi A, Mandili G, et al. (2010b) Malarial pigment enhances Heat Shock Protein-27 in THP-1 cells: new perspectives for in vitro studies on monocyte apoptosis prevention. Asian Pac J Trop Med 3: 934–938.
[31]  Polimeni M, Valente E, Aldieri E, Khadjavi A, Giribaldi G, et al. (2013) Role of 15-HETE in haemozoin-induced lysozyme release from human adherent monocytes. Biofactors 39: 304–314.
[32]  Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: e45.
[33]  Vandooren J, Geurts N, Martens E, Van den Steen PE, Jonghe SD, et al. (2011) Gelatin degradation assay reveals MMP-9 inhibitors and function of O-glycosylated domain. World J Biol Chem 2: 14–24.
[34]  Lee JC, Kumar S, Griswold DE, Underwood DC, Votta BJ, et al. (2000) Inhibition of p38 MAP kinase as a therapeutic strategy. Immunopharmacol 47: 185–201.
[35]  Nair MP, Mahajan S, Reynolds JL, Aalinkeel R, Nair H, et al. (2006) The flavonoid quercetin inhibits proinflammatory cytokine (tumor necrosis factor alpha) gene expression in normal peripheral blood mononuclear cells via modulation of the NF-kappa beta system. Clin Vaccine Immunol 13: 319–328.
[36]  Aldieri E, Atragene D, Bergandi L, Riganti C, Costamagna C, et al. (2003) Artemisinin inhibits inducible nitric oxide synthase and nuclear factor NF-kB activation. FEBS Lett 552: 141–144.
[37]  García-Pi?eres AJ, Castro V, Mora G, Schmidt TJ, Strunck E, et al. (2001) Cysteine 38 in p65/NF-kappaB plays a crucial role in DNA binding inhibition by sesquiterpene lactones. J Biol Chem 276: 39713–39720.
[38]  Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69: 562–573.
[39]  Chirco R, Liu XW, Jung KK, Kim HR (2006) Novel functions of TIMPs in cell signaling. Cancer Metastasis Rev 25: 99–113.
[40]  Stetler-Stevenson WG (2008) Tissue inhibitors of metalloproteinases in cell signaling: metalloproteinase-independent biological activities. Sci Signal 1: re6.
[41]  Prato M (2011) Malarial pigment does not induce MMP-2 and TIMP-2 protein release by human monocytes. Asian Pac J Trop Med 4: 756.
[42]  Bar-Or A, Nuttall RK, Duddy M, Alter A, Kim HJ, et al. (2003) Analyses of all matrix metalloproteinase members in leukocytes emphasize monocytes as major inflammatory mediators in multiple sclerosis. Brain 126: 2738–2749.
[43]  Giribaldi G, Prato M, Ulliers D, Gallo V, Schwarzer E, et al. (2010) Involvement of inflammatory chemokines in survival of human monocytes fed with malarial pigment. Infect Immun 78: 4912–4921.
[44]  Opdenakker G, Masure S, Proost P, Billiau A, van Damme J (1991b) Natural human monocyte gelatinase and its inhibitor. FEBS Lett 284: 73–78.
[45]  Yamamoto T, Eckes B, Mauch C, Hartmann K, Krieg T (2000) Monocyte chemoattractant protein-1 enhances gene expression and synthesis of matrix metalloproteinase-1 in human fibroblasts by an autocrine IL-1 alpha loop. J Immunol 164: 6174–6179.
[46]  Johnatty RN, Taub DD, Reeder SP, Turcovski-Corrales SM, Cottam DW, et al. (1997) Cytokine and chemokine regulation of proMMP-9 and TIMP-1 production by human peripheral blood lymphocytes. J Immunol 158: 2327–2333.
[47]  Opdenakker G, Masure S, Grillet B, Van Damme J (1991a) Cytokine-mediated regulation of human leukocyte gelatinases and role in arthritis. Lymphokine Cytokine Res 10: 317–324.
[48]  Nguyen J, Gogusev J, Knapnougel P, Bauvois B (2006) Protein tyrosine kinase and p38 MAP kinase pathways are involved in stimulation of matrix metalloproteinase-9 by TNF-alpha in human monocytes. Immunol Lett 106: 34–41.
[49]  Jovanovic DV, Di Battista JA, Martel-Pelletier J, Reboul P, He Y, et al. (2001) Modulation of TIMP-1 synthesis by antiinflammatory cytokines and prostaglandin E2 in interleukin 17 stimulated human monocytes/macrophages. J Rheumatol 28: 712–718.
[50]  Cambos M, Bazinet S, Abed E, Sanchez-Dardon J, Bernard C, et al. (2010) The IL-12p70/IL-10 interplay is differentially regulated by free heme and hemozoin in murine bone-marrow-derived macrophages. Int J Parasitol 40: 1003–1012.
[51]  Jaramillo M, Gowda DC, Radzioch D, Olivier M (2003) Hemozoin increases IFN-gamma-inducible macrophage nitric oxide generation through extracellular signal-regulated kinase- and NF-kappa B-dependent pathways. J Immunol 171: 4243–4253.
[52]  Jaramillo M, Godbout M, Olivier M (2005) Hemozoin induces macrophage chemokine expression through oxidative stress-dependent and -independent mechanisms. J Immunol 2005. 174: 475–484.
[53]  Griffith JW, Sun T, McIntosh MT, Bucala R (2009) Pure Hemozoin is inflammatory in vivo and activates the NALP3 inflammasome via release of uric acid. J Immunol 183: 5208–5220.
[54]  Khadjavi A, Valente E, Giribaldi G, Prato M (2013) Involvement of p38 MAPK in natural haemozoin- and 15-HETE-dependent MMP-9 enhancement in human adherent monocytes. Cell Biochem Funct. Epub 2013 Mar 7. DOI: 10.1002/cbf.2963.
[55]  Lucchi NW, Peterson DS, Moore JM (2008) Immunologic activation of human syncytiotrophoblast by Plasmodium falciparum. Malar J 7: 42.
[56]  Lucchi NW, Sarr D, Owino SO, Mwalimu SM, Peterson DS, et al. (2011) Natural hemozoin stimulates syncytiotrophoblast to secrete chemokines and recruit peripheral blood mononuclear cells. Placenta 32: 579–585.
[57]  Zhu J, Wu X, Goel S, Gowda NM, Kumar S, et al. (2009) MAPK-activated protein kinase 2 differentially regulates plasmodium falciparum glycosylphosphatidylinositol-induced production of tumor necrosis factor-{alpha} and interleukin-12 in macrophages. J Biol Chem 284: 15750–15761.
[58]  Lu Z, Serghides L, Patel SN, Degousee N, Rubin BB, et al. (2006) Disruption of JNK2 decreases the cytokine response to Plasmodium falciparum glycosylphosphatidylinositol in vitro and confers protection in a cerebral malaria model. J Immunol 177: 6344–6352.
[59]  Serghides L, Patel SN, Ayi K, Lu Z, Gowda DC, et al. (2009) Rosiglitazone modulates the innate immune response to Plasmodium falciparum infection and improves outcome in experimental cerebral malaria. J Infect Dis 199: 1536–1545.
[60]  Schrimpe AC, Wright DW (2009) Comparative analysis of gene expression changes mediated by individual constituents of hemozoin. Chem Res Toxicol 22: 433–445.
[61]  Dell’agli M, Galli GV, Bulgari M, Basilico N, Romeo S, et al. (2010) Ellagitannins of the fruit rind of pomegranate (Punica granatum) antagonize in vitro the host inflammatory response mechanisms involved in the onset of malaria. Malar J 9: 208 DOI: 10.1186/1475-2875-9-208.
[62]  Punsawad C, Krudsood S, Maneerat Y, Chaisri U, Tangpukdee N, et al. (2012) Activation of nuclear factor kappa B in peripheral blood mononuclear cells from malaria patients. Malar J 11: 191.
[63]  Ockenhouse CF, Hu WC, Kester KE, Cummings JF, Stewart A, et al. (2006) Common and divergent immune response signaling pathways discovered in peripheral blood mononuclear cell gene expression patterns in presymptomatic and clinically apparent malaria. Infect Immun 74: 5561–5573.
[64]  Burrows JN, Chibale K, Wells TN (2011) The state of the art in anti-malarial drug discovery and development. Curr Top Med Chem 11: 1226–1254.
[65]  Khalid SA, Farouk A, Geary TG, Jensen JB (1986) Potential antimalarial candidates from African plants: and in vitro approach using Plasmodium falciparum. J Ethnopharmacol 15: 201–209.
[66]  Guedez L, Stetler-Stevenson WG, Wolff L, Wang J, Fukushima P, et al. (1998) In vitro suppression of programmed cell death of B cells by tissue inhibitor of metalloproteinases-1. J Clin Invest 102: 2002–2010.
[67]  Li G, Fridman R, Kim HR (1999) Tissue inhibitor of metalloproteinase-1 inhibits apoptosis of human breast epithelial cells. Cancer Res 59: 6267–6275.
[68]  Singla DK, McDonald DE (2007) Factors released from embryonic stem cells inhibit apoptosis of H9c2 cells. Am J Physiol Heart Circ Physiol 293: H1590–1595.
[69]  Jung KK, Liu XW, Chirco R, Fridman R, Kim HR (2006) Identification of CD63 as a tissue inhibitor of metalloproteinase-1 interacting cell surface protein. EMBO J 25: 3934–3942.
[70]  Pols MS, Klumperman J (2009) Trafficking and function of the tetraspanin CD63. Exp Cell Res 315: 1584–1592.
[71]  Egea V, Zahler S, Rieth N, Neth P, Popp T, et al. (2012) Tissue inhibitor of metalloproteinase-1 (TIMP-1) regulates mesenchymal stem cells through let-7f microRNA and Wnt/β-catenin signaling. Proc Natl Acad Sci USA 109: E309–316.
[72]  Urban BC, Todryk S (2006) Malaria pigment paralyzes dendritic cells. J Biol 5: 4.
[73]  Giribaldi G, Ulliers D, Schwarzer E, Roberts I, Piacibello W, et al. (2004) Hemozoin- and 4-hydroxynonenal-mediated inhibition of erythropoiesis. Possible role in malarial dyserythropoiesis and anemia. Haematologica 89: 492–493.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133