全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Programmatically Selected Multidrug-Resistant Strains Drive the Emergence of Extensively Drug-Resistant Tuberculosis in South Africa

DOI: 10.1371/journal.pone.0070919

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background South Africa shows one of the highest global burdens of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB). Since 2002, MDR-TB in South Africa has been treated by a standardized combination therapy, which until 2010 included ofloxacin, kanamycin, ethionamide, ethambutol and pyrazinamide. Since 2010, ethambutol has been replaced by cycloserine or terizidone. The effect of standardized treatment on the acquisition of XDR-TB is not currently known. Methods We genetically characterized a random sample of 4,667 patient isolates of drug-sensitive, MDR and XDR-TB cases collected from three South African provinces, namely, the Western Cape, Eastern Cape and KwaZulu-Natal. Drug resistance patterns of a subset of isolates were analyzed for the presence of commonly observed resistance mutations. Results Our analyses revealed a strong association between distinct strain genotypes and the emergence of XDR-TB in three neighbouring provinces of South Africa. Strains predominant in XDR-TB increased in proportion by more than 20-fold from drug-sensitive to XDR-TB and accounted for up to 95% of the XDR-TB cases. A high degree of clustering for drug resistance mutation patterns was detected. For example, the largest cluster of XDR-TB associated strains in the Eastern Cape, affecting more than 40% of all MDR patients in this province, harboured identical mutations concurrently conferring resistance to isoniazid, rifampicin, pyrazinamide, ethambutol, streptomycin, ethionamide, kanamycin, amikacin and capreomycin. Conclusions XDR-TB associated genotypes in South Africa probably were programmatically selected as a result of the standard treatment regimen being ineffective in preventing their transmission. Our findings call for an immediate adaptation of standard treatment regimens for M/XDR-TB in South Africa.

References

[1]  WHO (2010) Multidrug and extensively drug-resistant TB (M/XDR-TB) 2010 Global report on surveillance and response. Available: http://whqlibdoc.who.int/publications/20?10/9789241599191_eng.pdf. Accessed 2012 Jun 11.
[2]  Gandhi NR, Nunn P, Dheda K, Schaaf HS, Zignol M, et al. (2010) Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet 375: 1830–1843.
[3]  WHO (2012) Global Tuberculosis Report 2012. Available: http://apps.who.int/iris/bitstream/10665?/75938/1/9789241564502_eng.pdf. Accessed 2013 Jan 23.
[4]  Zumla A, Raviglione M, Hafner R, von Reyn CF (2013) Tuberculosis. N Engl J Med 368: 745–755.
[5]  Muller B, Warren RM, Williams M, Bottger E, Gey Van Pittius NC, et al.. (2012) Acquisition, Transmission and Amplification of Drug-Resistant Tuberculosis. In: Donald PR, van Helden PD, editors. Progress in Respiratory Research. Karger. pp. 96–104.
[6]  Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, et al. (2009) Tuberculosis drug resistance mutation database. PLoS Med 6: e2.
[7]  Zignol M, Van GW, Falzon D, Sismanidis C, Glaziou P, et al. (2012) Surveillance of anti-tuberculosis drug resistance in the world: an updated analysis, 2007–2010. Bull World Health Organ 90: 111–119D.
[8]  WHO-IUTALD Global Project on anti-tuberculosis drug resistance surveillance (2008) Ant-tuberculosis drug resistance in the world (Report No 4). Available: http://www.who.int/tb/publications/2008/?drs_report4_26feb08.pdf. Accessed 2012 Jun 6.
[9]  National Health Laboratory Services (2010) National Institute for Communicable Diseases - Annual Report 2009. Available: http://www.nicd.ac.za/assets/files/Annua?l_report_2009.pdf. Accessed 2012 Jun 1.
[10]  Farley JE, Ram M, Pan W, Waldman S, Cassell GH, et al. (2011) Outcomes of multi-drug resistant tuberculosis (MDR-TB) among a cohort of South African patients with high HIV prevalence. PLoS One 6: e20436.
[11]  Dheda K, Shean K, Zumla A, Badri M, Streicher EM, et al. (2010) Early treatment outcomes and HIV status of patients with extensively drug-resistant tuberculosis in South Africa: a retrospective cohort study. Lancet 375: 1798–1807.
[12]  van Rie A, Warren RM, Beyers N, Gie RP, Classen CN, et al. (1999) Transmission of a multidrug-resistant Mycobacterium tuberculosis strain resembling “strain W” among noninstitutionalized, human immunodeficiency virus-seronegative patients. J Infect Dis 180: 1608–1615.
[13]  Victor TC, Streicher EM, Kewley C, Jordaan AM, van der Spuy GD, et al. (2007) Spread of an emerging Mycobacterium tuberculosis drug-resistant strain in the western Cape of South Africa. Int J Tuberc Lung Dis 11: 195–201.
[14]  Strauss OJ, Warren RM, Jordaan A, Streicher EM, Hanekom M, et al. (2008) Spread of a low-fitness drug-resistant Mycobacterium tuberculosis strain in a setting of high human immunodeficiency virus prevalence. J Clin Microbiol 46: 1514–1516.
[15]  Johnson R, Warren RM, van der Spuy GD, Gey Van Pittius NC, Theron D, et al. (2010) Drug-resistant tuberculosis epidemic in the Western Cape driven by a virulent Beijing genotype strain. Int J Tuberc Lung Dis 14: 119–121.
[16]  Pillay M, Sturm AW (2007) Evolution of the extensively drug-resistant F15/LAM4/KZN strain of Mycobacterium tuberculosis in KwaZulu-Natal, South Africa. Clin Infect Dis 45: 1409–1414.
[17]  Cox HS, McDermid C, Azevedo V, Muller O, Coetzee D, et al. (2010) Epidemic levels of drug resistant tuberculosis (MDR and XDR-TB) in a high HIV prevalence setting in Khayelitsha, South Africa. PLoS One 5: e13901.
[18]  Zhao Y, Xu S, Wang L, Chin DP, Wang S, et al. (2012) National survey of drug-resistant tuberculosis in China. N Engl J Med 366: 2161–2170.
[19]  WHO (2010) Treatment of Tuberculosis Guidelines. Available: http://www.who.int/tb/publications/tb_tr?eatmentguidelines/en/index.html. Accessed 2013 Mar 28.
[20]  Streicher EM, Muller B, Chihota V, Mlambo C, Tait M, et al. (2012) Emergence and treatment of multidrug resistant (MDR) and extensively drug-resistant (XDR) tuberculosis in South Africa. Infect Genet Evol 12: 686–694.
[21]  Hoek KGP, Schaaf HS, Van Pittius NCG, Van Helden PD, Warren RM (2009) Resistance to pyrazinamide and ethambutol compromises MDR/XDR-TB treatment. S Afr Med J 99: 785–787.
[22]  Muller B, Streicher EM, Hoek KG, Tait M, Trollip A, et al. (2011) inhA promoter mutations: a gateway to extensively drug-resistant tuberculosis in South Africa? Int J Tuberc Lung Dis 15: 344–351.
[23]  Chihota VN, Muller B, Mlambo CK, Pillay M, Tait M, et al. (2012) Population structure of multi- and extensively drug-resistant Mycobacterium tuberculosis strains in South Africa. J Clin Microbiol 50: 995–1002.
[24]  Gandhi NR, Moll A, Sturm AW, Pawinski R, Govender T, et al. (2006) Extensively Drug Resistant Tuberculosis as a cause of death in patients co-infected with Tuberculosis and HIV in a rural area of South Africa. Lancet 368: 1575–1580.
[25]  Ioerger TR, Feng Y, Chen X, Dobos KM, Victor TC, et al. (2010) The non-clonality of drug resistance in Beijing-genotype isolates of Mycobacterium tuberculosis from the Western Cape of South Africa. BMC Genomics 11: 670.
[26]  Ioerger TR, Koo S, No EG, Chen X, Larsen MH, et al. (2009) Genome analysis of multi- and extensively-drug-resistant tuberculosis from KwaZulu-Natal, South Africa. PLoS One 4: e7778.
[27]  Klopper M, Warren RM, Hayes C, Gey van Pittius NC, Streicher E, et al. (2013) Emergence and spread of Extensively and Totally Drug Resistant Tuberculosis in South Africa. Emerg Infect Dis 19: 449–455.
[28]  Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, et al. (1997) Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35: 907–914.
[29]  Streicher EM, Victor TC, van der SG, Sola C, Rastogi N, et al. (2007) Spoligotype signatures in the Mycobacterium tuberculosis complex. J Clin Microbiol 45: 237–240.
[30]  Brudey K, Driscoll JR, Rigouts L, Prodinger WM, Gori A, et al. (2006) Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol 6: 23.
[31]  Hanekom M, van der Spuy GD, Streicher E, Ndabambi SL, McEvoy CR, et al. (2007) A recently evolved sublineage of the Mycobacterium tuberculosis Beijing strain family is associated with an increased ability to spread and cause disease. J Clin Microbiol 45: 1483–1490.
[32]  Johnson R, Warren RM, Strauss OJ, Jordaan A, Falmer AA, et al. (2006) An outbreak of drug resistant Tuberculosis caused by a Beijing strain in the Western Cape, South Africa. Int J Tuberc Lung Dis 10: 1412–1414.
[33]  Victor TC, Jordaan AM, van Rie A, van der Spuy GD, Richardson M, et al. (1999) Detection of mutations in drug resistance genes of Mycobacterium tuberculosis by a dot-blot hybridization strategy. Tuber Lung Dis 79: 343–348.
[34]  Johnson R, Jordaan AM, Pretorius L, Engelke E, van der SG, et al. (2006) Ethambutol resistance testing by mutation detection. Int J Tuberc Lung Dis 10: 68–73.
[35]  Louw GE, Warren RM, Donald PR, Murray MB, Bosman M, et al. (2006) Frequency and implications of pyrazinamide resistance in managing previously treated tuberculosis patients. Int J Tuberc Lung Dis 10: 802–807.
[36]  Streicher EM, Bergval I, Dheda K, Bottger EC, Gey Van Pittius NC, et al. (2012) Mycobacterium tuberculosis population structure determines the outcome of genetics-based second-line drug resistance testing. Antimicrob Agents Chemother 56: 2420–2427.
[37]  Sirgel FA, Tait M, Warren RM, Streicher EM, Bottger EC, et al. (2012) Mutations in the rrs A1401G gene and phenotypic resistance to amikacin and capreomycin in Mycobacterium tuberculosis. Microb Drug Resist 18: 193–197.
[38]  Morlock GP, Metchock B, Sikes D, Crawford JT, Cooksey RC (2003) ethA, inhA, and katG loci of ethionamide-resistant clinical Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother 47: 3799–3805.
[39]  Georghiou SB, Magana M, Garfein RS, Catanzaro DG, Catanzaro A, et al. (2012) Evaluation of genetic mutations associated with Mycobacterium tuberculosis resistance to amikacin, kanamycin and capreomycin: a systematic review. PLoS One 7: e33275.
[40]  Jugheli L, Bzekalava N, de RP, Fissette K, Portaels F, et al. (2009) High level of cross-resistance between kanamycin, amikacin, and capreomycin among Mycobacterium tuberculosis isolates from Georgia and a close relation with mutations in the rrs gene. Antimicrob Agents Chemother 53: 5064–5068.
[41]  Sirgel FA, Warren RM, Streicher EM, Victor TC, van Helden PD, et al. (2012) gyrA mutations and phenotypic susceptibility levels to ofloxacin and moxifloxacin in clinical isolates of Mycobacterium tuberculosis. J Antimicrob Chemother 67: 1088–1093.
[42]  Filliol I, Motiwala AS, Cavatore M, Qi W, Hazbon MH, et al. (2006) Global phylogeny of Mycobacterium tuberculosis based on single nucleotide polymorphism (SNP) analysis: insights into tuberculosis evolution, phylogenetic accuracy of other DNA fingerprinting systems, and recommendations for a minimal standard SNP set. J Bacteriol 188: 759–772.
[43]  Gagneux S, Small PM (2007) Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect Dis 7: 328–337.
[44]  Zhang Y, Yew WW (2009) Mechanisms of drug resistance in Mycobacterium tuberculosis. Int J Tuberc Lung Dis 13: 1320–1330.
[45]  Caminero JA, Sotgiu G, Zumla A, Migliori GB (2010) Best drug treatment for multidrug-resistant and extensively drug-resistant tuberculosis. Lancet Infect Dis 10: 621–629.
[46]  Porteous JB (1959) The treatment of pulmonary tuberculosis. S Afr Med J 33: 265–267.
[47]  Muller B, Borrell S, Rose G, Gagneux S (2013) The heterogeneous evolution of multidrug-resistant Mycobacterium tuberculosis. Trends Genet 29: 160–169.
[48]  Devaux I, Manissero D, Fernandez de la Hoz K, Kremer K, van Soolingen D, et al. (2010) Surveillance of extensively drug-resistant tuberculosis in Europe, 2003–2007. Euro Surveill 15 doi:pii: 19518.
[49]  Perdigao J, Macedo R, Malaquias A, Ferreira A, Brum L, et al. (2010) Genetic analysis of extensively drug-resistant Mycobacterium tuberculosis strains in Lisbon, Portugal. J Antimicrob Chemother 65: 224–227.
[50]  Niemann S, Diel R, Khechinashvili G, Gegia M, Mdivani N, et al. (2010) Mycobacterium tuberculosis Beijing lineage favors the spread of multidrug-resistant tuberculosis in the Republic of Georgia. J Clin Microbiol 48: 3544–50–3550.
[51]  Iwamoto T, Yoshida S, Suzuki K, Wada T (2008) Population structure analysis of the Mycobacterium tuberculosis Beijing family indicates an association between certain sublineages and multidrug resistance. Antimicrob Agents Chemother 52: 3805–3809.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133