全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Replica Exchange Improves Sampling in Low-Resolution Docking Stage of RosettaDock

DOI: 10.1371/journal.pone.0072096

Full-Text   Cite this paper   Add to My Lib

Abstract:

Many protein-protein docking protocols are based on a shotgun approach, in which thousands of independent random-start trajectories minimize the rigid-body degrees of freedom. Another strategy is enumerative sampling as used in ZDOCK. Here, we introduce an alternative strategy, ReplicaDock, using a small number of long trajectories of temperature replica exchange. We compare replica exchange sampling as low-resolution stage of RosettaDock with RosettaDock's original shotgun sampling as well as with ZDOCK. A benchmark of 30 complexes starting from structures of the unbound binding partners shows improved performance for ReplicaDock and ZDOCK when compared to shotgun sampling at equal or less computational expense. ReplicaDock and ZDOCK consistently reach lower energies and generate significantly more near-native conformations than shotgun sampling. Accordingly, they both improve typical metrics of prediction quality of complex structures after refinement. Additionally, the refined ReplicaDock ensembles reach significantly lower interface energies and many previously hidden features of the docking energy landscape become visible when ReplicaDock is applied.

References

[1]  Garma L, Mukherjee S, Mitra P, Zhang Y (2012) How Many Protein-Protein Interactions Types Exist in Nature? PLoS ONE 7: e38913.
[2]  Melquiond ASJ, Karaca E, Kastritis PL, Bonvin AMJJ (2011) Next challenges in protein-protein docking: from proteome to interactome and beyond. WIREs Comput Mol Sci 2: 642–651.
[3]  Stein A, Mosca R, Aloy P (2011) Three-dimensional modeling of protein interactions and complexes is going “omics.”. Current Opinion in Structural Biology 21: 200–208.
[4]  Nooren IMA, Thornton JM (2003) Diversity of protein–protein interactions. EMBO J 22: 3486–3492.
[5]  Halperin I, Ma B, Wolfson H, Nussinov R (2002) Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins: Structure, Function, and Bioinformatics 47: 409–443.
[6]  Stratmann D, Boelens R, Bonvin AMJJ (2011) Quantitative use of chemical shifts for the modeling of protein complexes. Proteins: Structure, Function, and Bioinformatics 79: 2662–2670.
[7]  Cowieson NP, Kobe B, Martin JL (2008) United we stand: combining structural methods. Current Opinion in Structural Biology 18: 617–622.
[8]  Karaca E, Bonvin AMJJ (2013) Advances in integrative modeling of biomolecular complexes. Methods 59: 372–381 doi:10.1016/j.ymeth.2012.12.004.
[9]  Koehler J, Meiler J (2011) Expanding the utility of NMR restraints with paramagnetic compounds: background and practical aspects. Progress in Nuclear Magnetic Resonance Spectroscopy 59: 360–389.
[10]  Schneider S, Zacharias M (2011) Scoring optimisation of unbound protein-protein docking including protein binding site predictions. J Mol Recognit 25: 15–23.
[11]  Ritchie DW (2008) Recent progress and future directions in protein-protein docking. Current Protein and Peptide Science 9: 1–15.
[12]  Moreira IS, Fernandes PA, Ramos MJ (2009) Protein-protein docking dealing with the unknown. J Comput Chem 31: 317–342.
[13]  Smith GR, Sternberg MJE (2002) Prediction of protein–protein interactions by docking methods. Current Opinion in Structural Biology 12: 28–35.
[14]  Vajda S, Kozakov D (2009) Convergence and combination of methods in protein–protein docking. Current Opinion in Structural Biology 19: 164–170.
[15]  Sternberg MJ, Gabb HA, Jackson RM (1998) Predictive docking of protein-protein and protein-DNA complexes. Current Opinion in Structural Biology 8: 250–256.
[16]  Lorenzen S, Zhang Y (2007) Monte Carlo refinement of rigid-body protein docking structures with backbone displacement and side-chain optimization. Protein Sci 16: 2716–2725.
[17]  Zacharias M (2003) Protein-protein docking with a reduced protein model accounting for side-chain flexibility. Protein Sci 12: 1271–1282.
[18]  Chen R, Li L, Weng Z (2003) ZDOCK: An initial-stage protein-docking algorithm. Proteins: Structure, Function, and Bioinformatics 52: 80–87.
[19]  Gray JJ, Moughon S, Wang C, Schueler-Furman O, Kuhlman B, et al. (2003) Protein–Protein Docking with Simultaneous Optimization of Rigid-body Displacement and Side-chain Conformations. Journal of Molecular Biology 331: 281–299.
[20]  Dominguez C, Boelens R, Bonvin AMJJ (2003) HADDOCK: A Protein–Protein Docking Approach Based on Biochemical or Biophysical Information. J Am Chem Soc 125: 1731–1737.
[21]  Fleishman SJ, Baker D (2012) Role of the Biomolecular Energy Gap in Protein Design, Structure, and Evolution. Cell 149: 262–273.
[22]  Fernández Recio J, Totrov M, Abagyan R (2003) ICM-DISCO docking by global energy optimization with fully flexible side-chains. Proteins: Structure, Function, and Bioinformatics 52: 113–117.
[23]  Mandell JG, Roberts VA, Pique ME, Kotlovyi V, Mitchell JC, et al. (2001) Protein docking using continuum electrostatics and geometric fit. Protein Engineering 14: 105–113.
[24]  Aloy P, Querol E, Aviles FX, Sternberg MJE (2001) Automated structure-based prediction of functional sites in proteins: applications to assessing the validity of inheriting protein function from homology in genome annotation and to protein docking. Journal of Molecular Biology 311: 395–408.
[25]  Tovchigrechko A, Vakser IA (2006) GRAMM-X public web server for protein-protein docking. Nucleic Acids Research 34: W310–W314 doi:10.1093/nar/gkl206.
[26]  Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) Geometry-based flexible and symmetric protein docking. Proteins: Structure, Function, and Bioinformatics 60: 224–231.
[27]  Swendsen RH, Wang JS (1986) Replica Monte Carlo simulation of spin-glasses. Physical Review Letters 57: 2607–2609.
[28]  Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chemical Physics Letters 314: 141–151.
[29]  Kim YC, Tang C, Clore GM, Hummer G (2008) Replica exchange simulations of transient encounter complexes in protein–protein association. Proc Natl Acad Sci USA 105: 12855–12860.
[30]  Lensink MF, Wodak SJ (2010) Docking and scoring protein interactions: CAPRI 2009. Proteins: Structure, Function, and Bioinformatics 78: 3073–3084 doi:10.1002/prot.22818.
[31]  Chaudhury S, Berrondo M, Weitzner BD, Muthu P, Bergman H, et al. (2011) Benchmarking and Analysis of Protein Docking Performance in Rosetta v3.2. PLoS ONE 6: e22477.
[32]  Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of State Calculations by Fast Computing Machines. J Chem Phys 21: 1087–1092.
[33]  Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57: 97–109.
[34]  Gao Y, Douguet D, Tovchigrechko A, Vakser IA (2007) DOCKGROUND system of databases for protein recognition studies: Unbound structures for docking. Proteins: Structure, Function, and Bioinformatics 69: 845–851.
[35]  Fleishman SJ, Leaver-Fay A, Corn JE, Strauch E-M, Khare SD, et al. (2011) RosettaScripts: A Scripting Language Interface to the Rosetta Macromolecular Modeling Suite. PLoS ONE 6: e20161.
[36]  Méndez R, Leplae R, De Maria L, Wodak SJ (2003) Assessment of blind predictions of protein–protein interactions: current status of docking methods. Proteins: Structure, Function, and Bioinformatics 52: 51–67.
[37]  Patriksson A, van der Spoel D (2008) A temperature predictor for parallel tempering simulations. Physical Chemistry Chemical Physics 10: 2073–2077.
[38]  Rathore N, Chopra M, de Pablo JJ (2005) Optimal allocation of replicas in parallel tempering simulations. J Chem Phys 122: 024111 doi:10.1063/1.1831273.
[39]  Sanbonmatsu KY, Garc a AE (2002) Structure of Met-enkephalin in explicit aqueous solution using replica exchange molecular dynamics. Proteins: Structure, Function, and Bioinformatics 46: 225–234.
[40]  Fukunishi H, Watanabe O, Takada S (2002) On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: Application to protein structure prediction. J Chem Phys 116: 9058 doi:10.1063/1.1472510.
[41]  Hwang H, Vreven T, Pierce BG, Hung J-H, Weng Z (2010) Performance of ZDOCK and ZRANK in CAPRI rounds 13–19. Proteins: Structure, Function, and Bioinformatics 78: 3104–3110 doi:10.1002/prot.22764.
[42]  Wiehe K, Pierce B, Tong WW, Hwang H, Mintseris J, et al. (2007) The performance of ZDOCK and ZRANK in rounds 6–11 of CAPRI. Proteins: Structure, Function, and Bioinformatics 69: 719–725.
[43]  Wiehe K, Pierce B, Mintseris J, Tong WW, Anderson R, et al. (2005) ZDOCK and RDOCK performance in CAPRI rounds 3, 4, and 5. Proteins: Structure, Function, and Bioinformatics 60: 207–213 doi:10.1002/prot.20559.
[44]  Lorenzen S, Zhang Y (2007) Identification of near-native structures by clustering protein docking conformations. Proteins: Structure, Function, and Bioinformatics 68: 187–194 doi:10.1002/prot.21442.
[45]  Fraternali F, Cavallo L (2002) Parameter optimized surfaces (POPS): analysis of key interactions and conformational changes in the ribosome. Nucleic Acids Research 30: 2950–2960.
[46]  Kleinjung J, Fraternali F (2005) POPSCOMP: an automated interaction analysis of biomolecular complexes. Nucleic Acids Research 33: 342–346 doi:10.1093/nar/gki369.
[47]  Tyka MD, Keedy DA, André I, DiMaio F, Song Y, et al. (2011) Alternate States of Proteins Revealed by Detailed Energy Landscape Mapping. Journal of Molecular Biology 405: 607–618.
[48]  Tyka MD, Jung K, Baker D (2012) Efficient sampling of protein conformational space using fast loop building and batch minimization on highly parallel computers. J Comput Chem 33: 2483–2491 doi:10.1002/jcc.23069.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133