全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

The Chicken HS4 Insulator Element Does Not Protect the H19 ICR from Differential DNA Methylation in Yeast Artificial Chromosome Transgenic Mouse

DOI: 10.1371/journal.pone.0073925

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mono-allelic expression at the mouse IGF2/H19 locus is controlled by differential allelic DNA methylation of the imprinting control region (ICR). Because a randomly integrated H19 ICR fragment, when incorporated into the genome of transgenic mice (TgM), was allele-specifically methylated in somatic, but not in germ cells, it was suggested that allele-discriminating epigenetic signature, set within or somewhere outside of the Tg H19 ICR fragment in germ cells, was later translated into a differential DNA methylation pattern. To test if the chicken β-globin HS4 (cHS4) chromatin insulator might interfere with methylation imprinting establishment at the H19 ICR, we inserted the H19 ICR fragment, flanked by a set of floxed cHS4 core sequences, into a human β-globin locus YAC and generated TgM (insulated ICR' TgM). As controls, the cHS4 sequences were removed from one side (5'HS4-deleted ICR') or both sides (pseudo-WT ICR') of the insulated ICR' by in vivo cre-loxP recombination. The data show that while maternally inherited transgenic H19 ICR was not methylated in insulated ICR' TgM, it was significantly methylated upon paternal transmission, though the level was lower than in the pseudo-WT ICR' control. Because this reduced level of methylation was also observed in the 5'HS4-deleted ICR' TgM, we speculate that the phenotype is due to VEZF1-dependent demethylation activity, rather than the insulator function, borne in cHS4. Collectively, although we cannot rule out the possibility that cHS4 is incapable of blocking an allele-discriminating signal from outside of the transgene, the epigenetic signature appears to be marked intrinsically within the H19 ICR.

References

[1]  Bartolomei MS (2009) Genomic imprinting: employing and avoiding epigenetic processes. Genes Dev 23: 2124-2133. doi:10.1101/gad.1841409. PubMed: 19759261.
[2]  Arnaud P (2010) Genomic imprinting in germ cells: imprints are under control. Reproduction 140: 411-423. doi:10.1530/REP-10-0173. PubMed: 20501788.
[3]  Li Y, Sasaki H (2011) Genomic imprinting in mammals: its life cycle, molecular mechanisms and reprogramming. Cell Res 21: 466-473. doi:10.1038/cr.2011.15. PubMed: 21283132.
[4]  Abramowitz LK, Bartolomei MS (2012) Genomic imprinting: recognition and marking of imprinted loci. Curr Opin Genet Dev 22: 72-78. doi:10.1016/j.gde.2011.12.001. PubMed: 22195775.
[5]  Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N et al. (2004) Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429: 900-903. doi:10.1038/nature02633. PubMed: 15215868.
[6]  Kato Y, Kaneda M, Hata K, Kumaki K, Hisano M et al. (2007) Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum Mol Genet 16: 2272-2280. doi:10.1093/hmg/ddm179. PubMed: 17616512.
[7]  Bell AC, Felsenfeld G (2000) Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405: 482-485. doi:10.1038/35013100. PubMed: 10839546.
[8]  Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM et al. (2000) CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405: 486-489. doi:10.1038/35013106. PubMed: 10839547.
[9]  Davis TL, Yang GJ, McCarrey JR, Bartolomei MS (2000) The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development. Hum Mol Genet 9: 2885-2894. doi:10.1093/hmg/9.19.2885. PubMed: 11092765.
[10]  Henckel A, Chebli K, Kota SK, Arnaud P, Feil R (2012) Transcription and histone methylation changes correlate with imprint acquisition in male germ cells. EMBO J 31: 606-615. PubMed: 22117218.
[11]  Engel N, West AG, Felsenfeld G, Bartolomei MS (2004) Antagonism between DNA hypermethylation and enhancer-blocking activity at the H19 DMD is uncovered by CpG mutations. Nat Genet 36: 883-888. doi:10.1038/ng1399. PubMed: 15273688.
[12]  Tanimoto K, Shimotsuma M, Matsuzaki H, Omori A, Bungert J et al. (2005) Genomic imprinting recapitulated in the human beta-globin locus. Proc Natl Acad Sci U S A 102: 10250-10255. doi:10.1073/pnas.0409541102. PubMed: 16006531.
[13]  Gebert C, Kunkel D, Grinberg A, Pfeifer K (2010) H19 imprinting control region methylation requires an imprinted environment only in the male germ line. Mol Cell Biol 30: 1108-1115. doi:10.1128/MCB.00575-09. PubMed: 20038532.
[14]  Park KY, Sellars EA, Grinberg A, Huang SP, Pfeifer K (2004) The H19 differentially methylated region marks the parental origin of a heterologous locus without gametic DNA methylation. Mol Cell Biol 24: 3588-3595. doi:10.1128/MCB.24.9.3588-3595.2004. PubMed: 15082756.
[15]  Matsuzaki H, Okamura E, Shimotsuma M, Fukamizu A, Tanimoto K (2009) A randomly integrated transgenic H19 imprinting control region acquires methylation imprinting independently of its establishment in germ cells. Mol Cell Biol 29: 4595-4603. doi:10.1128/MCB.00275-09. PubMed: 19546235.
[16]  Delaval K, Govin J, Cerqueira F, Rousseaux S, Khochbin S et al. (2007) Differential histone modifications mark mouse imprinting control regions during spermatogenesis. EMBO J 26: 720-729. doi:10.1038/sj.emboj.7601513. PubMed: 17255950.
[17]  Ooi SK, Qiu C, Bernstein E, Li K, Jia D et al. (2007) DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448: 714-717. doi:10.1038/nature05987. PubMed: 17687327.
[18]  Otani J, Nankumo T, Arita K, Inamoto S, Ariyoshi M et al. (2009) Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX-DNMT3-DNMT3L domain. EMBO Rep 10: 1235-1241. doi:10.1038/embor.2009.218. PubMed: 19834512.
[19]  Zhang Y, Jurkowska R, Soeroes S, Rajavelu A, Dhayalan A et al. (2010) Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail. Nucleic Acids Res 38: 4246-4253. doi:10.1093/nar/gkq147. PubMed: 20223770.
[20]  Li BZ, Huang Z, Cui QY, Song XH, Du L et al. (2011) Histone tails regulate DNA methylation by allosterically activating de novo methyltransferase. Cell Res 21: 1172-1181. doi:10.1038/cr.2011.92. PubMed: 21606950.
[21]  Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT et al. (2009) Distinctive chromatin in human sperm packages genes for embryo development. Nature 460: 473-478. PubMed: 19525931.
[22]  Bell AC, West AG, Felsenfeld G (1999) The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 98: 387-396. doi:10.1016/S0092-8674(00)81967-4. PubMed: 10458613.
[23]  West AG, Huang S, Gaszner M, Litt MD, Felsenfeld G (2004) Recruitment of histone modifications by USF proteins at a vertebrate barrier element. Mol Cell 16: 453-463. doi:10.1016/j.molcel.2004.10.005. PubMed: 15525517.
[24]  Dickson J, Gowher H, Strogantsev R, Gaszner M, Hair A et al. (2010) VEZF1 elements mediate protection from DNA methylation. PLOS Genet 6: e1000804. PubMed: 20062523.
[25]  Huang S, Li X, Yusufzai TM, Qiu Y, Felsenfeld G (2007) USF1 recruits histone modification complexes and is critical for maintenance of a chromatin barrier. Mol Cell Biol 27: 7991-8002. doi:10.1128/MCB.01326-07. PubMed: 17846119.
[26]  Tanimoto K, Sugiura A, Omori A, Felsenfeld G, Engel JD et al. (2003) Human beta-globin locus control region HS5 contains CTCF- and developmental stage-dependent enhancer-blocking activity in erythroid cells. Mol Cell Biol 23: 8946-8952. doi:10.1128/MCB.23.24.8946-8952.2003. PubMed: 14645507.
[27]  Tanimoto K, Liu Q, Bungert J, Engel JD (1999) The polyoma virus enhancer cannot substitute for DNase I core hypersensitive sites 2-4 in the human beta-globin LCR. Nucleic Acids Res 27: 3130-3137. doi:10.1093/nar/27.15.3130. PubMed: 10454609.
[28]  Chung JH, Bell AC, Felsenfeld G (1997) Characterization of the chicken beta-globin insulator. Proc Natl Acad Sci U S A 94: 575-580. doi:10.1073/pnas.94.2.575. PubMed: 9012826.
[29]  Recillas-Targa F, Pikaart MJ, Burgess-Beusse B, Bell AC, Litt MD et al. (2002) Position-effect protection and enhancer blocking by the chicken beta-globin insulator are separable activities. Proc Natl Acad Sci U S A 99: 6883-6888. doi:10.1073/pnas.102179399. PubMed: 12011446.
[30]  Matsuzaki H, Okamura E, Fukamizu A, Tanimoto K (2010) CTCF binding is not the epigenetic mark that establishes post-fertilization methylation imprinting in the transgenic H19 ICR. Hum Mol Genet 19: 1190-1198. doi:10.1093/hmg/ddp589. PubMed: 20047949.
[31]  Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69: 915-926. doi:10.1016/0092-8674(92)90611-F. PubMed: 1606615.
[32]  Li E, Beard C, Jaenisch R (1993) Role for DNA methylation in genomic imprinting. Nature 366: 362-365. doi:10.1038/366362a0. PubMed: 8247133.
[33]  Eggermann T, Eggermann K, Sch?nherr N (2008) Growth retardation versus overgrowth: Silver-Russell syndrome is genetically opposite to Beckwith-Wiedemann syndrome. Trends Genet 24: 195-204. doi:10.1016/j.tig.2008.01.003. PubMed: 18329128.
[34]  Arpanahi A, Brinkworth M, Iles D, Krawetz SA, Paradowska A et al. (2009) Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF binding sequences. Genome Res 19: 1338-1349. doi:10.1101/gr.094953.109. PubMed: 19584098.
[35]  Nakamura T, Liu YJ, Nakashima H, Umehara H, Inoue K et al. (2012) PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature 486: 415-419. PubMed: 22722204.
[36]  Tamaru H, Selker EU (2001) A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414: 277-283. doi:10.1038/35104508. PubMed: 11713521.
[37]  Verona RI, Thorvaldsen JL, Reese KJ, Bartolomei MS (2008) The transcriptional status but not the imprinting control region determines allele-specific histone modifications at the imprinted H19 locus. Mol Cell Biol 28: 71-82. doi:10.1128/MCB.01534-07. PubMed: 17967893.
[38]  Henckel A, Nakabayashi K, Sanz LA, Feil R, Hata K et al. (2009) Histone methylation is mechanistically linked to DNA methylation at imprinting control regions in mammals. Hum Mol Genet 18: 3375-3383. doi:10.1093/hmg/ddp277. PubMed: 19515852.
[39]  Szabó PE, Tang SH, Reed MR, Silva FJ, Tsark WM et al. (2002) The chicken beta-globin insulator element conveys chromatin boundary activity but not imprinting at the mouse Igf2/H19 domain. Development 129: 897-904. PubMed: 11861473.
[40]  Gardiner-Garden M, Ballesteros M, Gordon M, Tam PP (1998) Histone- and protamine-DNA association: conservation of different patterns within the beta-globin domain in human sperm. Mol Cell Biol 18: 3350-3356. PubMed: 9584175.
[41]  Chotalia M, Smallwood SA, Ruf N, Dawson C, Lucifero D et al. (2009) Transcription is required for establishment of germline methylation marks at imprinted genes. Genes Dev 23: 105-117. doi:10.1101/gad.495809. PubMed: 19136628.
[42]  Lee DH, Singh P, Tsark WM, Szabó PE (2010) Complete biallelic insulation at the H19/Igf2 imprinting control region position results in fetal growth retardation and perinatal lethality. PLOS ONE 5: e12630. doi:10.1371/journal.pone.0012630. PubMed: 20838620.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133