[1] | Fedor MJ (2009) Comparative enzymology and structural biology of RNA self-cleavage. Annu Rev Biophys 38: 271-299. doi:10.1146/annurev.biophys.050708.133710. PubMed: 19416070.
|
[2] | Sharmeen L, Kuo MY, Dinter-Gottlieb G, Taylor J (1988) Antigenomic RNA of human delta virus can undergo self-cleavage. J Virol 62: 2674-2679. PubMed: 2455816.
|
[3] | Been MD, Wickham GS (1997) Self-cleaving ribozymes of hepatitis delta virus RNA. Eur J Biochem 247: 741-753. doi:10.1111/j.1432-1033.1997.00741.x. PubMed: 9288893.
|
[4] | Ferré-D’Amaré AR, Zhou K, Doudna JA (1998) Crystal structure of a hepatitis delta virus ribozyme. Nature 395: 567-574. doi:10.1038/26912. PubMed: 9783582.
|
[5] | Chen J-H, Yajima R, Chadalavada DM, Chase E, Bevilacqua PC et al. (2010) A 1.9 A crystal structure of the HDV ribozyme precleavage suggests both Lewis acid and general acid mechanisms contribute to phosphodiester cleavage. Biochemistry 49: 6508-6518. doi:10.1021/bi100670p. PubMed: 20677830.
|
[6] | Nishikawa F, Kawakami J, Chiba A, Shirai M, Kumar PK et al. (1996) Selection in vitro of trans-acting genomic human hepatitis delta virus (HDV) ribozymes. Eur J Biochem 237: 712-718. doi:10.1111/j.1432-1033.1996.0712p.x. PubMed: 8647117.
|
[7] | ?egiewicz M, Wich?acz A, Brzezicha B, Ciesio?ka J (2006) Antigenomic delta ribozyme variants with mutations in the catalytic core obtained by the in vitro selection method. Nucleic Acids Res 34: 1270-1280. doi:10.1093/nar/gkl018. PubMed: 16513845.
|
[8] | Nehdi A, Perreault JP (2006) Unbiased in vitro selection reveals the unique character of the self-cleaving antigenomic HDV RNA sequence. Nucleic Acids Res 34: 584-592. doi:10.1093/nar/gkl202. PubMed: 16432262.
|
[9] | Salehi-Ashtiani K, Lupták A, Litovchick A, Szostak JW (2006) A genomewide search for ribozymes reveals an HDV-like sequence in the human CPEB3 gene. Science 313: 1788-1792. doi:10.1126/science.1129308. PubMed: 16990549.
|
[10] | Webb C-HT, Riccitelli NJ, Ruminski DJ, Lupták A (2009) Wide-spread occurrence of self-cleaving ribozymes. Science 326: 953. doi:10.1126/science.1178084. PubMed: 19965505.
|
[11] | Eickbush DG, Eickbush TH (2010) R2 retrotransposons encode a self-cleaving ribozyme for processing from an rRNA cotranscript. Mol Cell Biol 30: 3142-3150. doi:10.1128/MCB.00300-10. PubMed: 20421411.
|
[12] | Ruminski DJ, Webb C-HT, Riccitelli NJ, Lupták A (2011) Processing and translation initiation of non-long terminal repeat retrotransposons by hepatitis delta virus (HDV)-like self-cleaving ribozymes. J Biol Chem 286: 41286-41295. doi:10.1074/jbc.M111.297283. PubMed: 21994949.
|
[13] | Sánchez-Luque FJ, López MC, Macias F, Alonso C, Thomas MC (2011) Identification of an hepatitis delta virus-like ribozyme at the mRNA 5' end of the L1Tc retrotransposon from Trypanosoma cruzi. Nucleic Acids Res 39: 8065-8077. doi:10.1093/nar/gkr478. PubMed: 21724615.
|
[14] | Burke WD, Malik HS, Lathe WC III, Eickbush TH (1998) Are retrotransposons long-term hitchhikers? Nature 392: 141-142. doi:10.1038/32330. PubMed: 9515960.
|
[15] | Kojima KK, Fujiwara H (2005) Long-term inheritance of the 28S rDNA-specific retrotransposon R2. Mol Biol Evol 22: 2157-2165. doi:10.1093/molbev/msi210. PubMed: 16014872.
|
[16] | Kojima KK, Kuma K, Toh H, Fujiwara H (2006) Identification of rDNA-specific non-LTR retrotransposons in Cnidaria. Mol Biol Evol 23: 1984-1993. doi:10.1093/molbev/msl067. PubMed: 16870681.
|
[17] | Luan DD, Korman MH, Jakubczak JJ, Eickbush TH (1993) Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72: 595-605. doi:10.1016/0092-8674(93)90078-5. PubMed: 7679954.
|
[18] | Bibillo A, Eickbush TH (2004) End-to-end template jumping by the reverse transcriptase encoded by the R2 retrotransposon. J Biol Chem 279: 14945-14953. doi:10.1074/jbc.M310450200. PubMed: 14752111.
|
[19] | Christensen SM, Ye J, Eickbush TH (2006) RNA from the 5' end of the R2 retrotransposon controls R2 protein binding to and cleavage of its DNA target site. Proc Natl Acad Sci U S A 103: 17602-17607. doi:10.1073/pnas.0605476103. PubMed: 17105809.
|
[20] | Eickbush DG, Eickbush TH (2012) R2 and R2/R1 hybrid non-autonomous retrotransposons derived by internal deletions of full length elements. Mobile DNA. doi:10.1186/1759-8753-3-10.
|
[21] | George JA, Burke WD, Eickbush TH (1996) Analysis of the 5' junctions of R2 insertions with the 28S gene: implications for non-LTR retrotransposition. Genetics 142: 853-863. PubMed: 8849892.
|
[22] | Burke WD, Malik HS, Jones JP, Eickbush TH (1999) The domain structure and retrotransposition mechanism of R2 elements are conserved throughout arthropods. Mol Biol Evol 16: 502-511. doi:10.1093/oxfordjournals.molbev.a026132. PubMed: 10331276.
|
[23] | Kierzek E, Christensen SM, Eickbush TH, Kierzek R, Turner DH et al. (2009) Secondary structures for 5' regions of R2 retrotransposon RNAs reveal a novel conserved pseudoknot and regions that evolve under different constraints. J Mol Biol 390: 428-442. doi:10.1016/j.jmb.2009.04.048. PubMed: 19397915.
|
[24] | Stage DE, Eickbush TH (2009) Origin of nascent lineages and the mechanisms used to prime second-strand DNA synthesis in the R1 and R2 retrotransposons of Drosophila. Genome Biol 10: R49. doi:10.1186/gb-2009-10-5-r49. PubMed: 19416522.
|
[25] | Luchetti A, Mantovani B (2013) Non-LTR R2 element evolutionary patterns: phylogenetic incongruences, rapid radiation and the maintenance of multiple lineages. PLOS ONE 8: e57076. doi:10.1371/journal.pone.0057076. PubMed: 23451148.
|
[26] | Stage DE, Eickbush TH (2010) Maintenance of multiple lineages of R1 and R2 retrotransposable elements in the ribosomal RNA gene loci of Nasonia. Insect Mol Biol 19: 37-48. doi:10.1111/j.1365-2583.2009.00949.x. PubMed: 20167016.
|
[27] | Lévesque D, Reymond C, Perreault J-P (2012) Characterization of the trans Watson-Crick GU base pair located in the catalytic core of the antigenomic HDV ribozyme. PLOS ONE 7: e40309. doi:10.1371/journal.pone.0040309. PubMed: 22768274.
|
[28] | Perrotta AT, Been MD (1990) The self-cleaving domain from the genomic RNA of hepatitis delta virus: sequence requirements and the effects of denaturant. Nucleic Acids Res 18: 6821-6827. doi:10.1093/nar/18.23.6821. PubMed: 2263447.
|
[29] | Chadalavada DM, Knudsen SM, Nakano S, Bevilacqua PC (2000) A role for upstream RNA structure in facilitating the catalytic fold of the genomic hepatitis delta virus ribozyme. J Mol Biol 301: 349-367. doi:10.1006/jmbi.2000.3953. PubMed: 10926514.
|
[30] | Webb C-HT, Lupták A (2011) HDV-like self-cleaving ribozymes. RNA Biol 8: 719-727. doi:10.4161/rna.8.5.16226. PubMed: 21734469.
|
[31] | Xiong Y, Burke WD, Eickbush TH (1988) Ribosomal DNA insertion elements R1Bm and R2Bm can transpose in a sequence specific manner to locations outside the 28S gene. Nucleic Acids Res 16: 10561-10573. doi:10.1093/nar/16.22.10561. PubMed: 2849750.
|
[32] | Been MD, Perrotta AT, Rosenstein SP (1992) Secondary structure of the self-cleaving RNA of hepatitis delta virus: applications to catalytic RNA design. Biochemistry 31: 11843-11852. doi:10.1021/bi00162a024. PubMed: 1445917.
|
[33] | Thill G, Vasseur M, Tanner NK (1993) Structural and sequence elements required for the self-cleaving activity of the hepatitis delta virus ribozyme. Biochemistry 32: 4254-4262. doi:10.1021/bi00067a013. PubMed: 8476853.
|
[34] | Friedlander TP, Horst KR, Regier JC, Mitter C, Peigler RS et al. (1998) Two nuclear genes yield concordant relationships within Attacini (Lepidoptera: Saturniidae). Mol Phylogenet Evol 9: 131-140. doi:10.1006/mpev.1997.9999. PubMed: 9479702.
|
[35] | Mingazzini V, Luchetti A, Mantovani B (2011) R2 dynamics in Triops cancriformis (Bosc, 1801) (Crustacea, Branchiopoda, Notostraca): turnover rate and 28S concerted evolution. Heredity 106: 567-575. doi:10.1038/hdy.2010.86. PubMed: 20628416.
|
[36] | Malik HS, Burke WD, Eickbush TH (1999) The age and evolution of non-LTR retrotransposable elements. Mol Biol Evol 16: 793-805. doi:10.1093/oxfordjournals.molbev.a026164. PubMed: 10368957.
|
[37] | Kojima KK, Fujiwara H (2004) Cross-genome screening of novel sequence-specific non-LTR retrotransposons: various multicopy RNA genes and microsatellites are selected as targets. Mol Biol Evol 21: 207-217. PubMed: 12949131.
|
[38] | Gladyshev EA, Arkhipova IR (2009) Rotifer rDNA-specific R9 retrotransposable elements generate an exceptionally long target site duplication upon insertion. Gene 448: 145-150. doi:10.1016/j.gene.2009.08.016. PubMed: 19744548.
|
[39] | Burke WD, Müller F, Eickbush TH (1995) R4, a non-LTR retrotransposon specific to the large subunit rRNA gene of nematodes. Nucleic Acids Res 23: 4628-4634. doi:10.1093/nar/23.22.4628. PubMed: 8524653.
|
[40] | Xiong Y, Eickbush TH (1993) Dong, a non-long terminal repeat (non-LTR) retrotransposable element from Bombyx mori. Nucleic Acids Res 21: 1318. doi:10.1093/nar/21.5.1318. PubMed: 8385316.
|
[41] | Eickbush TH, Jamburuthugoda VK (2008) The diversity of retrotransposons and the properties of their reverse transcriptase. Virus Res 134: 221-234. doi:10.1016/j.virusres.2007.12.010. PubMed: 18261821.
|
[42] | Bibillo A, Eickbush TH (2002) High processivity of the reverse transcriptase from a non-long terminal repeat retrotransposon. J Biol Chem 277: 34836-34845. doi:10.1074/jbc.M204345200. PubMed: 12101182.
|
[43] | Eickbush DG, Luan DD, Eickbush TH (2000) Integration of Bombyx mori R2 sequences into the 28S ribosomal RNA genes of Drosophila melanogaster. Mol Cell Biol 20: 213-233. doi:10.1128/MCB.20.1.213-223.2000. PubMed: 10594024.
|
[44] | Ostertag EM, Kazazian HH Jr. (2001) Biology of mammalian L1 retrotransposons. Annu Rev Genet 35: 501-538. doi:10.1146/annurev.genet.35.102401.091032. PubMed: 11700292.
|
[45] | Christensen SM, Eickbush TH (2005) R2 target primed reverse transcription: ordered cleavage and polymerization steps by protein subunits asymmetrically bound to the target DNA. Mol Cell Biol 25: 6617-6628. doi:10.1128/MCB.25.15.6617-6628.2005. PubMed: 16024797.
|
[46] | Tang J, Breaker RR (2000) Structural diversity of self-cleaving ribozymes. Proc Natl Acad Sci U S A 97: 5784-5799. doi:10.1073/pnas.97.11.5784. PubMed: 10823936.
|
[47] | Salehi-Ashtiani K, Szostak JW (2001) In vitro evolution suggests multiple origins for the hammerhead ribozyme. Nature 414: 82-84. doi:10.1038/35102081. PubMed: 11689947.
|