全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Filopodia and Membrane Blebs Drive Efficient Matrix Invasion of Macrophages Transformed by the Intracellular Parasite Theileria annulata

DOI: 10.1371/journal.pone.0075577

Full-Text   Cite this paper   Add to My Lib

Abstract:

Recent technical advances have broadened our understanding of processes that govern mammalian cell migration in health and disease but many of the molecular and morphological alterations that precede and accompany movement of cells – in particular in three-dimensional (3D) environments - are still incompletely understood. In this manuscript, using high-resolution and time-lapse microscopy imaging approaches, we describe morphodynamic processes during rounded/amoeboid cell invasion and molecules associated with the cellular invasion structures. We used macrophages infected with the intracellular protozoan parasite Theileria annulata, which causes Tropical Theileriosis in susceptible ruminants such as domestic cattle. T. annulata transforms its host cell that, as a result, acquires many characteristics of human cancer cells including a markedly increased potential to migrate, disseminate and expand in the body of the host animal. Hence, virulence of the disease is associated with the capability of infected cells to disseminate inside the host. Using T. annulata-transformed macrophages as a model system, we described a novel mode of rounded/amoeboid macrophage migration. We show that filopodia-like membrane extensions at the leading edge lead the way and further evolve in blebbing membrane protrusions to promote progressive expansion of the matrix. Associated with focal invasion structures we detected ezrin, radixin, moesin-family proteins and their regulatory kinase MAP4K4. Furthermore, we linked Rho-kinase activity to contractile force generation, which is essential for infected cell motility. Thus, the motility mode of these parasite-transformed macrophages contrasts with those described so far in human macrophages such as the tunneling or mesenchymal modes, which require engulfment, compaction and ingestion of matrix or proteolytic matrix degradation, respectively. Together, our data reveal protrusion dynamics at the leading edge of invading cells in 3D at unprecedented temporal and spatial resolution and suggest a novel mode of rounded/amoeboid invasive cell motility that exploits actin-driven filopodia formation in combination with pressure-driven membrane blebs.

References

[1]  Friedl P, Wolf K (2010) Plasticity of cell migration: a multiscale tuning model. J Cell Biol 188: 11-19. doi:10.1083/JCB1885OIA11. PubMed: 19951899.
[2]  Madsen CD, Sahai E (2010) Cancer dissemination--lessons from leukocytes. Dev Cell 19: 13-26. doi:10.1016/j.devcel.2010.06.013. PubMed: 20643347.
[3]  Torka R, Thuma F, Herzog V, Kirfel G (2006) ROCK signaling mediates the adoption of different modes of migration and invasion in human mammary epithelial tumor cells. Exp Cell Res 312: 3857-3871. doi:10.1016/j.yexcr.2006.08.025. PubMed: 17010335.
[4]  Bergert M, Chandradoss SD, Desai RA, Paluch E (2012) Cell mechanics control rapid transitions between blebs and lamellipodia during migration. Proc Natl Acad Sci U S A 109: 14434-14439. doi:10.1073/pnas.1207968109. PubMed: 22786929.
[5]  Rottner K, Stradal TE (2011) Actin dynamics and turnover in cell motility. Curr Opin Cell Biol 23: 569-578. doi:10.1016/j.ceb.2011.07.003. PubMed: 21807492.
[6]  Dobbelaere D, Baumgartner M (2009) Theileria. In: UH SchaibleA. Haas. Intracellular Niches of Microbes - A Pathogens Guide through the Host Cell. Weinheim: Wiley-VCH Verlag. pp. 613-632.
[7]  Baumgartner M (2011) Theileria annulata promotes Src kinase-dependent host cell polarization by manipulating actin dynamics in podosomes and lamellipodia. Cell Microbiol 13: 538-553. doi:10.1111/j.1462-5822.2010.01553.x. PubMed: 21091599.
[8]  Baumgartner M, Angelisová P, Setterblad N, Mooney N, Werling D et al. (2003) Constitutive exclusion of Csk from Hck-positive membrane microdomains permits Src kinase-dependent proliferation of Theileria-transformed B lymphocytes. Blood 101: 1874-1881. doi:10.1182/blood-2002-02-0456. PubMed: 12411311.
[9]  Baumgartner M, Chaussepied M, Moreau MF, Werling D, Davis WC et al. (2000) Constitutive PI3-K activity is essential for proliferation, but not survival, of Theileria parva-transformed B cells. Cell Microbiol 2: 329-339. doi:10.1046/j.1462-5822.2000.00062.x. PubMed: 11207589.
[10]  Chaussepied M, Janski N, Baumgartner M, Lizundia R, Jensen K et al. (2010) TGF-b2 induction regulates invasiveness of Theileria-transformed leukocytes and disease susceptibility. PLOS Pathog 6: e1001197. PubMed: 21124992.
[11]  Dessauge F, Hilaly S, Baumgartner M, Blumen B, Werling D et al. (2005) c-Myc activation by Theileria parasites promotes survival of infected B-lymphocytes. Oncogene 24: 1075-1083. doi:10.1038/sj.onc.1208314. PubMed: 15580287.
[12]  Lizundia R, Chaussepied M, Huerre M, Werling D, Di Santo JP et al. (2006) c-Jun NH2-terminal kinase/c-Jun signaling promotes survival and metastasis of B lymphocytes transformed by Theileria. Cancer Res 66: 6105-6110. doi:10.1158/0008-5472.CAN-05-3861. PubMed: 16778183.
[13]  Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496: 445-455. doi:10.1038/nature12034. PubMed: 23619691.
[14]  Van Goethem E, Poincloux R, Gauffre F, Maridonneau-Parini I, Le Cabec V (2010) Matrix architecture dictates three-dimensional migration modes of human macrophages: differential involvement of proteases and podosome-like structures. J Immunol 184: 1049-1061. doi:10.4049/jimmunol.0902223. PubMed: 20018633.
[15]  Somerville RP, Adamson RE, Brown CG, Hall FR (1998) Metastasis of Theileria annulata macroschizont-infected cells in scid mice is mediated by matrix metalloproteinases. Parasitology 116(3): 223-228. doi:10.1017/S0031182097002151. PubMed: 9550215.
[16]  Forsyth LM, Minns FC, Kirvar E, Adamson RE, Hall FR et al. (1999) Tissue damage in cattle infected with Theileria annulata accompanied by metastasis of cytokine-producing, schizont-infected mononuclear phagocytes. J Comp Pathol 120: 39-57. doi:10.1053/jcpa.1998.0256. PubMed: 10098015.
[17]  Adamson RE, Hall FR (1996) Matrix metalloproteinases mediate the metastatic phenotype of Theileria annulata-transformed cells. Parasitology 113(5): 449-455. doi:10.1017/S0031182000081518. PubMed: 8893530.
[18]  Giampieri S, Manning C, Hooper S, Jones L, Hill CS et al. (2009) Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol 11: 1287-1296. doi:10.1038/ncb1973. PubMed: 19838175.
[19]  Wyckoff JB, Pinner SE, Gschmeissner S, Condeelis JS, Sahai E (2006) ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Curr Biol 16: 1515-1523. doi:10.1016/j.cub.2006.05.065. PubMed: 16890527.
[20]  Kramer N, Walzl A, Unger C, Rosner M, Krupitza G et al. (2013) In vitro cell migration and invasion assays. Mutat Res 752: 10-24. doi:10.1016/j.mrrev.2012.08.001. PubMed: 22940039.
[21]  Van Goethem E, Guiet R, Balor S, Charrière GM, Poincloux R et al. (2011) Macrophage podosomes go 3D. Eur J Cell Biol 90: 224-236. doi:10.1016/j.ejcb.2010.07.011. PubMed: 20801545.
[22]  McGuire K, Manuja A, Russell GC, Springbett A, Craigmile SC et al. (2004) Quantitative analysis of pro-inflammatory cytokine mRNA expression in Theileria annulata-infected cell lines derived from resistant and susceptible cattle. Vet Immunol Immunopathol 99: 87-98. doi:10.1016/j.vetimm.2004.01.003. PubMed: 15113657.
[23]  Moreau MF, Thibaud JL, Miled LB, Chaussepied M, Baumgartner M et al. (1999) Theileria annulata in CD5(+) macrophages and B1 B cells. Infect Immun 67: 6678-6682. PubMed: 10569790.
[24]  Chaussepied M, Lallemand D, Moreau MF, Adamson R, Hall R et al. (1998) Upregulation of Jun and Fos family members and permanent JNK activity lead to constitutive AP-1 activation in Theileria-transformed leukocytes. Mol Biochem Parasitol 94: 215-226. doi:10.1016/S0166-6851(98)00070-X. PubMed: 9747972.
[25]  Martín-Villar E, Megías D, Castel S, Yurrita MM, Vilaró S et al. (2006) Podoplanin binds ERM proteins to activate RhoA and promote epithelial-mesenchymal transition. J Cell Sci 119: 4541-4553. doi:10.1242/jcs.03218. PubMed: 17046996.
[26]  Amieva MR, Litman P, Huang L, Ichimaru E, Furthmayr H (1999) Disruption of dynamic cell surface architecture of NIH3T3 fibroblasts by the N-terminal domains of moesin and ezrin: in vivo imaging with GFP fusion proteins. J Cell Sci 112(1): 111-125. PubMed: 9841908.
[27]  Schnittger L, Katzer F, Biermann R, Shayan P, Boguslawski K et al. (2002) Characterization of a polymorphic Theileria annulata surface protein (TaSP) closely related to PIM of Theileria parva: implications for use in diagnostic tests and subunit vaccines. Mol Biochem Parasitol 120: 247-256. doi:10.1016/S0166-6851(02)00013-0. PubMed: 11897130.
[28]  Reichardt P, Gunzer F, Gunzer M (2007) Analyzing the physicodynamics of immune cells in a three-dimensional collagen matrix. Methods Mol Biol 380: 253-269. doi:10.1007/978-1-59745-395-0_15. PubMed: 17876098.
[29]  Baumgartner M (2011) Enforcing host cell polarity: an apicomplexan parasite strategy towards dissemination. Curr Opin Microbiol 14: 436-444. doi:10.1016/j.mib.2011.07.003. PubMed: 21795099.
[30]  Friedl P, Wolf K, Lammerding J (2011) Nuclear mechanics during cell migration. Curr Opin Cell Biol 23: 55-64. doi:10.1016/j.ceb.2010.10.015. PubMed: 21109415.
[31]  Yu X, Machesky LM (2012) Cells assemble invadopodia-like structures and invade into matrigel in a matrix metalloprotease dependent manner in the circular invasion assay. PLOS ONE 7: e30605. doi:10.1371/journal.pone.0030605. PubMed: 22347388.
[32]  Cosen-Binker LI, Kapus A (2006) Cortactin: the gray eminence of the cytoskeleton. Physiol (Bethesda) 21: 352-361. doi:10.1152/physiol.00012.2006. PubMed: 16990456.
[33]  Baumgartner M, Sillman AL, Blackwood EM, Srivastava J, Madson N et al. (2006) The Nck-interacting kinase phosphorylates ERM proteins for formation of lamellipodium by growth factors. Proc Natl Acad Sci U S A 103: 13391-13396. doi:10.1073/pnas.0605950103. PubMed: 16938849.
[34]  Aouadi M, Tesz GJ, Nicoloro SM, Wang M, Chouinard M et al. (2009) Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature 458: 1180-1184. doi:10.1038/nature07774. PubMed: 19407801.
[35]  Charras G, Paluch E (2008) Blebs lead the way: how to migrate without lamellipodia. Nat Rev Mol Cell Biol 9: 730-736. doi:10.1038/nrg2461. PubMed: 18628785.
[36]  Fehon RG, McClatchey AI, Bretscher A (2010) Organizing the cell cortex: the role of ERM proteins. Nat Rev Mol Cell Biol 11: 276-287. doi:10.1038/nrm2866. PubMed: 20308985.
[37]  Charras GT, Hu CK, Coughlin M, Mitchison TJ (2006) Reassembly of contractile actin cortex in cell blebs. J Cell Biol 175: 477-490. doi:10.1083/jcb.200602085. PubMed: 17088428.
[38]  Charras GT (2008) A short history of blebbing. J Microsc 231: 466-478. doi:10.1111/j.1365-2818.2008.02059.x. PubMed: 18755002.
[39]  Ng T, Parsons M, Hughes WE, Monypenny J, Zicha D et al. (2001) Ezrin is a downstream effector of trafficking PKC-integrin complexes involved in the control of cell motility. EMBO J 20: 2723-2741. doi:10.1093/emboj/20.11.2723. PubMed: 11387207.
[40]  Belkina NV, Liu Y, Hao JJ, Karasuyama H, Shaw S (2009) LOK is a major ERM kinase in resting lymphocytes and regulates cytoskeletal rearrangement through ERM phosphorylation. Proc Natl Acad Sci U S A 106: 4707-4712. doi:10.1073/pnas.0805963106. PubMed: 19255442.
[41]  Matsui T, Maeda M, Doi Y, Yonemura S, Amano M et al. (1998) Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J Cell Biol 140: 647-657. doi:10.1083/jcb.140.3.647. PubMed: 9456324.
[42]  Haubert D, Gharib N, Rivero F, Wiegmann K, H?sel M et al. (2007) PtdIns(4,5)P-restricted plasma membrane localization of FAN is involved in TNF-induced actin reorganization. EMBO J 26: 3308-3321. doi:10.1038/sj.emboj.7601778. PubMed: 17599063.
[43]  Jensen K, Paxton E, Waddington D, Talbot R, Darghouth MA et al. (2008) Differences in the transcriptional responses induced by Theileria annulata infection in bovine monocytes derived from resistant and susceptible cattle breeds. Int J Parasitol 38: 313-325. doi:10.1016/j.ijpara.2007.08.007. PubMed: 17949724.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133