全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

TRIM3 Regulates the Motility of the Kinesin Motor Protein KIF21B

DOI: 10.1371/journal.pone.0075603

Full-Text   Cite this paper   Add to My Lib

Abstract:

Kinesin superfamily proteins (KIFs) are molecular motors that transport cellular cargo along the microtubule cytoskeleton. KIF21B is a neuronal kinesin that is highly enriched in dendrites. The regulation and specificity of microtubule transport involves the binding of motors to individual cargo adapters and accessory proteins. Moreover, posttranslational modifications of either the motor protein, their cargos or tubulin regulate motility, cargo recognition and the binding or unloading of cargos. Here we show that the ubiquitin E3 ligase TRIM3, also known as BERP, interacts with KIF21B via its RBCC domain. TRIM3 is found at intracellular and Golgi-derived vesicles and co-localizes with the KIF21B motor in neurons. Trim3 gene deletion in mice and TRIM3 overexpression in cultured neurons both suggested that the E3-ligase function of TRIM3 is not involved in KIF21B degradation, however TRIM3 depletion reduces the motility of the motor. Together, our data suggest that TRIM3 is a regulator in the modulation of KIF21B motor function.

References

[1]  Hirokawa N, Niwa S, Tanaka Y (2010) Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68: 610-638. doi:10.1016/j.neuron.2010.09.039. PubMed: 21092854.
[2]  Setou M, Seog DH, Tanaka Y, Kanai Y, Takei Y et al. (2002) Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature 417: 83-87. doi:10.1038/nature743. PubMed: 11986669.
[3]  Kapitein LC, Schlager MA, Kuijpers M, Wulf PS, van Spronsen M et al. (2010) Mixed microtubules steer dynein-driven cargo transport into dendrites. Curr Biol 20: 290-299. doi:10.1016/j.cub.2009.12.052. PubMed: 20137950.
[4]  Westermann S, Weber K (2003) Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol 4: 938-947. doi:10.1038/nrm1260. PubMed: 14685172.
[5]  Janke C, Kneussel M (2010) Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton. Trends Neurosci, 33: 362–72. PubMed: 20541813.
[6]  Maas C, Belgardt D, Lee HK, Heisler FF, Lappe-Siefke C et al. (2009) Synaptic activation modifies microtubules underlying transport of postsynaptic cargo. Proc Natl Acad Sci U S A 106: 8731-8736. doi:10.1073/pnas.0812391106. PubMed: 19439658.
[7]  Dompierre JP, Godin JD, Charrin BC, Cordelières FP, King SJ et al. (2007) Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J Neurosci 27: 3571-3583. doi:10.1523/JNEUROSCI.0037-07.2007. PubMed: 17392473.
[8]  Ikegami K, Heier RL, Taruishi M, Takagi H, Mukai M et al. (2007) Loss of alpha-tubulin polyglutamylation in ROSA22 mice is associated with abnormal targeting of KIF1A and modulated synaptic function. Proc Natl Acad Sci U S A 104: 3213-3218. doi:10.1073/pnas.0611547104. PubMed: 17360631.
[9]  Guillaud L, Wong R, Hirokawa N (2008) Disruption of KIF17-Mint1 interaction by CaMKII-dependent phosphorylation: a molecular model of kinesin-cargo release. Nat Cell Biol 10: 19-29. doi:10.1038/ncb1665. PubMed: 18066053.
[10]  Verhey KJ, Hammond JW (2009) Traffic control: regulation of kinesin motors. Nat Rev Mol Cell Biol 10: 765-777. doi:10.1038/nrm2782. PubMed: 19851335.
[11]  Marszalek JR, Weiner JA, Farlow SJ, Chun J, Goldstein LS (1999) Novel dendritic kinesin sorting identified by different process targeting of two related kinesins: KIF21A and KIF21B. J Cell Biol 145: 469-479. doi:10.1083/jcb.145.3.469. PubMed: 10225949.
[12]  Baas PW, Deitch JS, Black MM, Banker GA (1988) Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc Natl Acad Sci U S A 85: 8335-8339. doi:10.1073/pnas.85.21.8335. PubMed: 3054884.
[13]  International Multiple Sclerosis Genetics Consortium (IMSGC) (2010) Comprehensive follow-up of the first genome-wide association study of multiple sclerosis identifies KIF21B and TMEM39A as susceptibility loci. Hum Mol Genet 19: 953-962. doi:10.1093/hmg/ddp542. PubMed: 20007504.
[14]  Goris A, Boonen S, D’Hooghe MB, Dubois B (2010) Replication of KIF21B as a susceptibility locus for multiple sclerosis. J Med Genet 47: 775-776. doi:10.1136/jmg.2009.075911. PubMed: 20587413.
[15]  Franke A, Balschun T, Karlsen TH, Hedderich J, May S et al. (2008) Replication of signals from recent studies of Crohn’s disease identifies previously unknown disease loci for ulcerative colitis. Nat Genet 40: 713-715. doi:10.1038/ng.148. PubMed: 18438405.
[16]  Danoy P, Pryce K, Hadler J, Bradbury LA, Farrar C et al. (2010) Association of variants at 1q32 and STAT3 with ankylosing spondylitis suggests genetic overlap with Crohn’s disease. PLOS Genet 6: e1001195. PubMed: 21152001.
[17]  Napolitano LM, Meroni G (2012) TRIM family: Pleiotropy and diversification through homomultimer and heteromultimer formation. IUBMB Life 64: 64-71. doi:10.1002/iub.580. PubMed: 22131136.
[18]  Napolitano LM, Jaffray EG, Hay RT, Meroni G (2011) Functional interactions between ubiquitin E2 enzymes and TRIM proteins. Biochem J 434: 309-319. doi:10.1042/BJ20101487. PubMed: 21143188.
[19]  Ozato K, Shin DM, Chang TH, Morse HC 3rd (2008) TRIM family proteins and their emerging roles in innate immunity. Nat Rev Immunol 8: 849-860. doi:10.1038/nri2413. PubMed: 18836477.
[20]  Hung AY, Sung CC, Brito IL, Sheng M (2010) Degradation of postsynaptic scaffold GKAP and regulation of dendritic spine morphology by the TRIM3 ubiquitin ligase in rat hippocampal neurons. PLOS ONE 5: e9842. doi:10.1371/journal.pone.0009842. PubMed: 20352094.
[21]  Chu Y, Yang X (2011) SUMO E3 ligase activity of TRIM proteins. Oncogene 30: 1108-1116. doi:10.1038/onc.2010.462. PubMed: 20972456.
[22]  Shin SM, Zhang N, Hansen J, Gerges NZ, Pak DT et al. (2012) GKAP orchestrates activity-dependent postsynaptic protein remodeling and homeostatic scaling. Nat Neurosci 15: 1655-1666. doi:10.1038/nn.3259. PubMed: 23143515.
[23]  El-Husseini AE, Vincent SR (1999) Cloning and characterization of a novel RING finger protein that interacts with class V myosins. J Biol Chem 274: 19771-19777. doi:10.1074/jbc.274.28.19771. PubMed: 10391919.
[24]  El-Husseini AE, Kwasnicka D, Yamada T, Hirohashi S, Vincent SR (2000) BERP, a novel ring finger protein, binds to alpha-actinin-4. Biochem Biophys Res Commun 267: 906-911. doi:10.1006/bbrc.1999.2045. PubMed: 10673389.
[25]  Yan Q, Sun W, Kujala P, Lotfi Y, Vida TA et al. (2005) CART: an Hrs/actinin-4/BERP/myosin V protein complex required for efficient receptor recycling. Mol Biol Cell 16: 2470-2482. doi:10.1091/mbc.E04-11-1014. PubMed: 15772161.
[26]  Cheung CC, Yang C, Berger T, Zaugg K, Reilly P et al. (2010) Identification of BERP (brain-expressed RING finger protein) as a p53 target gene that modulates seizure susceptibility through interacting with GABA(A) receptors. Proc Natl Acad Sci U S A 107: 11883-11888. doi:10.1073/pnas.1006529107. PubMed: 20543135.
[27]  Plechanovová A, Jaffray EG, Tatham MH, Naismith JH, Hay RT (2012) Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis. Nature 489: 115-120. doi:10.1038/nature11376. PubMed: 22842904.
[28]  Rexach MF, Latterich M, Schekman RW (1994) Characteristics of endoplasmic reticulum-derived transport vesicles. J Cell Biol 126: 1133-1148. doi:10.1083/jcb.126.5.1133. PubMed: 8063853.
[29]  Rodríguez CI, Buchholz F, Galloway J, Sequerra R, Kasper J et al. (2000) High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat Genet 25: 139-140. doi:10.1038/75973. PubMed: 10835623.
[30]  Schwenk F, Baron U, Rajewsky K (1995) A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res 23: 5080-5081. doi:10.1093/nar/23.24.5080. PubMed: 8559668.
[31]  Ying H, Shen X, Park B, Yue BY (2010) Posttranslational modifications, localization, and protein interactions of optineurin, the product of a glaucoma gene. PLOS ONE 5: e9168. doi:10.1371/journal.pone.0009168. PubMed: 20161783.
[32]  Guruprasad K, Reddy BV, Pandit MW (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng 4: 155-161. doi:10.1093/protein/4.2.155. PubMed: 2075190.
[33]  Kanai Y, Dohmae N, Hirokawa N (2004) Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43: 513-525. doi:10.1016/j.neuron.2004.07.022. PubMed: 15312650.
[34]  Rieser E, Cordier SM, Walczak H (2013) Linear ubiquitination: a newly discovered regulator of cell signalling. Trends Biochem Sci 38: 94-102. doi:10.1016/j.tibs.2012.11.007. PubMed: 23333406.
[35]  Hirokawa N, Takemura R (2004) Kinesin superfamily proteins and their various functions and dynamics. Exp Cell Res 301: 50-59. doi:10.1016/j.yexcr.2004.08.010. PubMed: 15501445.
[36]  Huang CJ, Huang CC, Chang CC (2012) Association of the testis-specific TRIM/RBCC protein RNF33/TRIM60 with the cytoplasmic motor proteins KIF3A and KIF3B. Mol Cell Biochem 360: 121-131. doi:10.1007/s11010-011-1050-8. PubMed: 21909995.
[37]  Heisler FF, Loebrich S, Pechmann Y, Maier N, Zivkovic AR et al. (2011) Muskelin regulates actin filament- and microtubule-based GABA(A) receptor transport in neurons. Neuron 70: 66-81. doi:10.1016/j.neuron.2011.03.008. PubMed: 21482357.
[38]  Mosesson Y, Chetrit D, Schley L, Berghoff J, Ziv T et al. (2009) Monoubiquitinylation regulates endosomal localization of Lst2, a negative regulator of EGF receptor signaling. Dev Cell 16: 687-698. doi:10.1016/j.devcel.2009.03.015. PubMed: 19460345.
[39]  Hoepfner S, Severin F, Cabezas A, Habermann B, Runge A et al. (2005) Modulation of receptor recycling and degradation by the endosomal kinesin KIF16B. Cell 121: 437-450. doi:10.1016/j.cell.2005.02.017. PubMed: 15882625.
[40]  Friedman DS, Vale RD (1999) Single-molecule analysis of kinesin motility reveals regulation by the cargo-binding tail domain. Nat Cell Biol 1: 293-297. doi:10.1038/13008. PubMed: 10559942.
[41]  Sun F, Zhu C, Dixit R, Cavalli V (2011) Sunday Driver/JIP3 binds kinesin heavy chain directly and enhances its motility. EMBO J 30: 3416-3429. doi:10.1038/emboj.2011.229. PubMed: 21750526.
[42]  Loiseau P, Davies T, Williams LS, Mishima M, Palacios IM (2010) Drosophila PAT1 is required for Kinesin-1 to transport cargo and to maximize its motility. Development 137: 2763-2772. doi:10.1242/dev.048108. PubMed: 20630947.
[43]  Cho KI, Yi H, Desai R, Hand AR, Haas AL et al. (2009) RANBP2 is an allosteric activator of the conventional kinesin-1 motor protein, KIF5B, in a minimal cell-free system. EMBO Rep 10: 480-486. doi:10.1038/embor.2009.29. PubMed: 19305391.
[44]  Colin E, Zala D, Liot G, Rangone H, Borrell-Pagès M et al. (2008) Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons. EMBO J 27: 2124-2134. doi:10.1038/emboj.2008.133. PubMed: 18615096.
[45]  Fuhrmann JC, Kins S, Rostaing P, El Far O, Kirsch J et al. (2002) Gephyrin interacts with Dynein light chains 1 and 2, components of motor protein complexes. J Neurosci 22: 5393-5402. PubMed: 12097491.
[46]  Mandelkow EM, Stamer K, Vogel R, Thies E, Mandelkow E (2003) Clogging of axons by tau, inhibition of axonal traffic and starvation of synapses. Neurobiol Aging 24: 1079-1085. doi:10.1016/j.neurobiolaging.2003.04.007. PubMed: 14643379.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133