CD317/tetherin (aka BST2 or HM1.24 antigen) is an interferon inducible membrane protein present in regions of the lipid bilayer enriched in sphingolipids and cholesterol (often termed lipid rafts). It has been implicated in an eclectic mix of cellular processes including, most notably, the retention of fully formed viral particles at the surface of cells infected with HIV and other enveloped viruses. Expression of the HIV viral accessory protein Vpu has been shown to lead to intracellular sequestration and degradation of tetherin, thereby counteracting the inhibition of viral release. There is evidence that tetherin interacts directly with Vpu, but it remains unclear where in the cell this interaction occurs or if Vpu expression affects the lipid raft localisation of tetherin. We have addressed these points using biochemical and cell imaging approaches focused on endogenous rather than ectopically over-expressed tetherin. We find i) no evidence for an interaction between Vpu and endogenous tetherin at the cell surface, ii) the vast majority of endogenous tetherin that is at the cell surface in control cells is in lipid rafts, iii) internalised tetherin is present in non-raft fractions, iv) expression of Vpu in cells expressing endogenous tetherin leads to the loss of tetherin from lipid rafts, v) internalised tetherin enters early endosomes, and late endosomes, in both control cells and cells expressing Vpu, but the proportion of tetherin molecules destined for degradation rather than recycling is increased in cells expressing Vpu vi) lysosomes are the primary site for degradation of endogenous tetherin in cells expressing Vpu. Our studies underlie the importance of studying endogenous tetherin and let us propose a model in which Vpu intercepts newly internalised tetherin and diverts it for lysosomal destruction rather than recycling to the cell surface.
References
[1]
Goto T, Kennel SJ, Abe M, Takishita M, Kosaka M et al. (1994) A novel membrane antigen selectively expressed on terminally differentiated human B cells. Blood 84: 1922-1930. PubMed: 8080996.
[2]
Vidal-Laliena M, Romero X, March S, Requena V, Petriz J et al. (2005) Characterization of antibodies submitted to the B cell section of the 8th Human Leukocyte Differentiation Antigens Workshop by flow cytometry and immunohistochemistry. Cell Immunol 236: 6-16. doi:10.1016/j.cellimm.2005.08.002. PubMed: 16157322.
[3]
Blasius AL, Giurisato E, Cella M, Schreiber RD, Shaw AS et al. (2006) Bone marrow stromal cell antigen 2 is a specific marker of type I IFN-producing cells in the naive mouse, but a promiscuous cell surface antigen following IFN stimulation. J Immunol 177: 3260-3265. PubMed: 16920966.
[4]
Neil SJ, Zang T, Bieniasz PD (2008) Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451: 425-430. doi:10.1038/nature06553. PubMed: 18200009.
[5]
Van Damme N, Goff G, Katsura C, Jorgenson RL, Mitchell R et al. (2008) The Interferon-Induced Protein BST-2 Restricts HIV-1 Release and Is Downregulated from the Cell Surface by the Viral Vpu Protein. Cell Host Microbe 3: 245-252. doi:10.1016/j.chom.2008.03.001. PubMed: 18342597.
[6]
Dubé M, Bego MG, Paquay C, Cohen EA (2010) Modulation of HIV-1-host interaction: role of the Vpu accessory protein. Retrovirology 7: 114-133. doi:10.1186/1742-4690-7-S1-P114. PubMed: 21176220.
[7]
Billcliff PG, Rollason R, Prior I, Owen DM, Gaus K et al. (2013) CD317/Tetherin is an Organiser of Membrane Microdomains. J Cell Sci 126: 1553-1564. doi:10.1242/jcs.112953. PubMed: 23378022.
[8]
Kupzig S, Korolchuk V, Rollason R, Sugden A, Wilde A et al. (2003) BST-2/HM1.24 is a raft-associated apical membrane protein with an unusual topology. Traffic 4: 694-709. doi:10.1034/j.1600-0854.2003.00129.x. PubMed: 12956872.
[9]
Elortza F, Mohammed S, Bunkenborg J, Foster LJ, Nühse TS et al. (2006) Modification-specific proteomics of plasma membrane proteins: identification and characterization of glycosylphosphatidylinositol-anchored proteins released upon phospholipase D treatment. J Proteome Res 5: 935-943. doi:10.1021/pr050419u. PubMed: 16602701.
[10]
Perez-Caballero D, Zang T, Ebrahimi A, McNatt MW, Gregory DA et al. (2009) Tetherin inhibits HIV-1 release by directly tethering virions to cells. Cell 139: 499-511. doi:10.1016/j.cell.2009.08.039. PubMed: 19879838.
[11]
Andrew AJ, Kao S, Strebel K (2011) The C-terminal hydrophobic region in human BST/2tetherin functions as a second transmembrane domain motif. J Biol Chem 286: 39967-39981. doi:10.1074/jbc.M111.287011. PubMed: 21937450.
[12]
Lingwood D, Simons K (2010) Lipid Rafts As as Membrane-Organizing Principle. Science 327: 46-50. doi:10.1126/science.1174621. PubMed: 20044567.
[13]
Kusumi A, Suzuki KGN, Kasai RS, Ritchie K, Fujiwara TK (2011) Hierarchical mesoscale domain organization of the plasma membrane. Trends Biochem Sci 36: 604-615. doi:10.1016/j.tibs.2011.08.001. PubMed: 21917465.
[14]
Rollason R, Korolchuk V, Hamilton C, Schu P, Banting G (2007) Clathrin-mediated endocytosis of a lipid-raft-associated protein is mediated through a dual tyrosine motif. J Cell Sci 120: 3850-3858. doi:10.1242/jcs.003343. PubMed: 17940069.
[15]
Hinz A, Miguet N, Natrajan G, Usami Y, Yamanaka H et al. (2010) Structural Basis of HIV-1 Tethering to Membranes by the BST-2/Tetherin Ectodomain. Cell Host Microbe 22: 314-323. PubMed: 20399176.
[16]
Swiecki M, Scheaffer SM, Allaire M, Fremont DH, Colonna M et al. (2011) Structural and biophysical analysis of BST-2/tetherin ectodomains reveals an evolutionary conserved design to inhibit virus release. J Biol Chem 286: 2987-2997. doi:10.1074/jbc.M110.190538. PubMed: 21084286.
[17]
Yang H, Wang J, Jia X, McNatt MW, Zang T et al. (2010) Structural insight into the mechanisms of enveloped virus tethering by tetherin. Proc Natl Acad Sci U S A 107: 18428-18432. doi:10.1073/pnas.1011485107. PubMed: 20940320.
[18]
Schubert HL, Zhai Q, Sandrin V, Eckert DM, Garcia-Maya M et al. (2010) Structural and functional studies on the extracellular domain of BST2/tetherin in reduced and oxidized conformations. Proc Natl Acad Sci U S A 107: 17951-17966. doi:10.1073/pnas.1008206107. PubMed: 20880831.
[19]
Lopez LA, Yang SJ, Hauser H, Exline CM, Haworth KG et al. (2010) Ebola virus glycoprotein counteracts BST-2/Tetherin restriction in a sequence-independent manner that does not require tetherin surface removal. J Virol 84: 7243-7255. doi:10.1128/JVI.02636-09. PubMed: 20444895.
[20]
Kaletsky RL, Francica JR, Agrawal-Gamse C, Bates P (2009) Tetherin-mediated restriction of filovirus budding is antagonized by the Ebola glycoprotein. Proc Natl Acad Sci U S A 106: 2886-2891. doi:10.1073/pnas.0811014106. PubMed: 19179289.
[21]
Mansouri M, Viswanathan K, Douglas JL, Hines J, Gustin J et al. (2009) Molecular Mechanism of BST2/Tetherin Downregulation by K5/MIR2 of Kaposi’s Sarcoma-Associated Herpesvirus. J Virol 83: 9672-9681. doi:10.1128/JVI.00597-09. PubMed: 19605472.
[22]
Altmann SM, Grünberg RG, Lenne PF, Yl?nne J, Raae A et al. (2002) Pathways and intermediates in forced unfolding of spectrin repeats. Structure 10: 1085-1096. doi:10.1016/S0969-2126(02)00808-0. PubMed: 12176386.
[23]
Lee CK, Wang YM, Huang LS, Lin S (2007) Atomic force microscopy: determination of unbinding force, off rate and energy barrier for protein ?ìligand interaction. Micron 38: 446-461.
[24]
Tokarev A, Guatelli JC (2011) Misdirection of membrane trafficking by HIV-1 Vpu and Nef. Cellular Logistics 1: 90-102. doi:10.4161/cl.1.3.16708. PubMed: 21922073.
[25]
Florin EL, Moy VT, Gaub HE (1994) Adhesion forces between individual ligand-receptor pairs. Science 264: 415-417. doi:10.1126/science.8153628. PubMed: 8153628.
[26]
Hussain A, Das SR, Tanwar C, Jameel S (2007) Oligomerization of the human immunodeficiency viris type 1 (HIV-1) Vpu protein - a genetic, biochemical and biophysical analysis. Virol J 4: 81-92. doi:10.1186/1743-422X-4-81. PubMed: 17727710.
[27]
Lopez CF, Montal M, Blasie JK, Klein ML, Moore PB (2002) Molecular dynamics investigation of membrane-bound bundles of the channel-forming transmembrane domain of viral protein U from the human immunodeficiency virus HIV-1. Biophys J 83: 1259-1267. doi:10.1016/S0006-3495(02)73898-8. PubMed: 12202353.
[28]
Andrew A, Strebel K (2010) HIV-1 Vpu targets cell surface markers CD4 and BST-2 through disticnt mechanisms. Mol Aspects Med 31: 407-417. doi:10.1016/j.mam.2010.08.002. PubMed: 20858517.
[29]
Pralle A, Prummer M, Florin EL, Stelzer EH, Hoerber J (1999) Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light. Microsc Res Tech 44: 378-386. doi:10.1002/(SICI)1097-0029(19990301)44:5. PubMed: 10090214.
[30]
Kobayashi T, Ode H, Yoshida T, Sato K, Gee P et al. (2011) Identification of Amino Acids in the Human Tetherin Transmembrane Domain Responsible for HIV-1 Vpu Interaction and Susceptibility. J Virol 85: 932-945. doi:10.1128/JVI.01668-10. PubMed: 21068238.
[31]
McNatt MW, Zang T, Hatziioannou T, Bartlett M, Fofana IB et al. (2009) Species-specific activity of HIV-1 Vpu and positive selcetion of tetherin transmembrane domain variants. PLOS Pathog 5: e1000300.
[32]
Rong L, Zhang J, Lu J, Pan Q, Lorgeoux RP et al. (2009) The transmembrane domain of BST-2 determines its sensitivity to down-modulation by human immunodeficiency virus type 1 Vpu. J Virol 83: 7536-7546. doi:10.1128/JVI.00620-09. PubMed: 19474106.
[33]
Tischer C, Altmann S, Fisinger S, Heinrich H?rber JK, Stelzer EHK et al. (2001) Three-dimensional thermal noise imaging. Appl Phys Lett 79: 3878. doi:10.1063/1.1423404.
[34]
Florin EL, Pralle A, Stelzer E, Hoerber J (1998) Photonic force microscope calibration by thermal noise analysis. Applied Physics A: Materials Science & Processing 66: 75-78. doi:10.1007/s003390051103.
[35]
Douglas JL, Viswanathan K, McCarroll MN, Gustin JK, Früh K et al. (2009) Vpu directs the degradation of the human immunodeficiency virus restriction factor BST-2/Tetherin via a {beta}TrCP-dependent mechanism. J Virol 83: 7931-7947. doi:10.1128/JVI.00242-09. PubMed: 19515779.
[36]
Mitchell RS, Katsura C, Skasko MA, Fitzpatrick K, Lau D et al. (2009) Vpu antagonizes BST-2-mediated restriction of HIV-1 release via beta-TrCP and endo-lysosomal trafficking. PLOS Pathog 5: e1000450. PubMed: 19478868.
[37]
Pardieu C, Vigan R, Wilson SJ, Calvi A, Zang T et al. (2010) The RING-CH ligase K5 antagonizes restriction of KSHV and HIV-1 particle release by mediating ubiquitin-dependent endosomal degradation of tetherin. PLOS Pathog 15: e1000843. PubMed: 20419159.
[38]
Mangeat B, Gers-Huber G, Lehmann M, Zufferey M, Luban J et al. (2009) HIV-1 Vpu neutralizes the antiviral factor Tetherin/BST-2 by binding it and directing its beta-TrCP2-dependent degradation. PLOS Pathog 5: e1000574. PubMed: 19730691.
[39]
Miyagi E, Andrew AJ, Kao S, Strebel K (2009) Vpu enhances HIV-1 virus release in the absence of Bst-2 cell surface down-modulation and intracellular depletion. Proc Natl Acad Sci U S A 106: 2828-2873. PubMed: 19196977.
[40]
Dube M, Roy BB, Guiot-Guillain P, Binette J, Mercier J et al. (2010) Antagonism of tetherin restriction of HIV-1 release by Vpu involves binding and sequestration of the restriction factor in a perinuclear compartment. PLOS Pathog 6: e1000856.
[41]
Hauser H, Lopez LA, Yang SJ, Oldenburg JE, Exline CM et al. (2010) HIV-1 Vpu and HIV-2 Env counteract BST-2/tetherin by sequestration in a perinuclear compartment. Retrovirology 7: 51-67. doi:10.1186/1742-4690-7-51. PubMed: 20529266.
[42]
Dubé M, Paquay C, Roy BB, Bego MG, Mercier J et al. (2011) HIV-1 Vpu Antagonizes BST-2 by Interfering Mainly with the Trafficking of Newly Synthesized BST-2 to the Cell Surface. Traffic 12: 1714-1729. doi:10.1111/j.1600-0854.2011.01277.x. PubMed: 21902775.
[43]
Ruiz A, Hill MS, Schmitt K, Stephens EB (2010) Membrane raft association of the Vpu protein of human immunodeficiency virus type 1 correlates with enhanced virus release. Virology 408: 89-102. doi:10.1016/j.virol.2010.08.031. PubMed: 20880565.
[44]
López Bernal A (2007) The regulation of uterine relaxation. Semin Cell Dev Biol 18: 340-347. doi:10.1016/j.semcdb.2007.05.002. PubMed: 17582797.
[45]
Hammonds J, Spearman P (2010) An Imperfect Rule for the Particle Roost. Cell Host Microbe 7: 261-263. doi:10.1016/j.chom.2010.04.001. PubMed: 20413094.
[46]
López Bernal A (2007) Prostaglandins, oxytocin, and antagonists. In: F. PetragliaJF StraussSG GabbeG. Weiss. Preterm Birth Mechanisms, mediators, prediction, prevention and interventions. Oxford: Informa UK Ltd.. pp. 167-180.
[47]
Masuyama N, Kuronita T, Tanaka R, Muto T, Hirota Y et al. (2009) HM1.24 is internalized from lipid rafts by clathrin-mediated endocytosis through interaction with alpha-adaptin. J Biol Chem 284: 15927-15941. doi:10.1074/jbc.M109.005124. PubMed: 19359243.
[48]
Cao W, Bover L, Cho M, Wen X, Hanabuchi S et al. (2009) Regulation of TLR7/9 responses in plasmacytoid dendritic cells by BST2 and ILT7 receptor interaction. J Exp Med 206: 1603-1614. doi:10.1084/jem.20090547. PubMed: 19564354.
[49]
Oakley FD, Smith RL, Engelhardt JF (2009) Lipid rafts and caveolin-1 coordinate interleukin-1beta (IL-1beta)-dependent activation of NFkappaB by controlling endocytosis of Nox2 and IL-1beta receptor 1 from the plasma membrane. J Biol Chem 284: 33255-33264. doi:10.1074/jbc.M109.042127. PubMed: 19801678.
[50]
Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11: 288-290. doi:10.1364/OL.11.000288. PubMed: 19730608.
[51]
Andrew AJ, Miyagi E, Kao S, Strebel K (2009) The formation of cysteine-linked dimers of BST-2/tetherin is important for inhibition of HIV-1 virus release but not for sensitivity to Vpu. Retrovirology 6: 80-96. doi:10.1186/1742-4690-6-S3-P80. PubMed: 19737401.