Increasing evidence suggests that microRNAs are intimately involved in the pathophysiology of heart failure. MicroRNA-22 (miR-22) is a muscle-enriched miRNA required for optimum cardiac gene transcription and adaptation to hemodynamic stress by pressure overload in mice. Recent evidence also suggests that miR-22 induces hypertrophic growth and it is oftentimes upregulated in end stage heart failure. However the scope of mRNA targets and networks of miR-22 in the heart failure remained unclear. We analyzed transgenic mice with enhanced levels of miR-22 expression in adult cardiomyocytes to identify important pathophysiologic targets of miR-22. Our data shows that forced expression of miR-22 induces a pro-hypertrophic gene expression program, and it elicits contractile dysfunction leading to cardiac dilation and heart failure. Increased expression of miR-22 impairs the Ca2+ transient, Ca2+ loading into the sarcoplasmic reticulum plus it interferes with transcription of estrogen related receptor (ERR) and PPAR downstream genes. Mechanistically, miR-22 postranscriptionally inhibits peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), PPARα and sirtuin 1 (SIRT1) expression via a synergistic circuit, which may account for deleterious actions of unchecked miR-22 expression on the heart.
References
[1]
Diwan A, Dorn GW 2nd (2007) Decompensation of cardiac hypertrophy: cellular mechanisms and novel therapeutic targets. Physiol (Bethesda) 22: 56-64. doi:10.1152/physiol.00033.2006. PubMed: 17289931.
[2]
Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65: 45-79. doi:10.1146/annurev.physiol.65.092101.142243. PubMed: 12524460.
[3]
Rajabi M, Kassiotis C, Razeghi P, Taegtmeyer H (2007) Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail Rev 12: 331-343. doi:10.1007/s10741-007-9034-1. PubMed: 17516164.
Crawford PA, Schaffer JE (2013) Metabolic stress in the myocardium: Adaptations of gene expression. J Mol Cell Cardiol, 55: 130–8. PubMed: 22728216.
[6]
Neubauer S (2007) The failing heart--an engine out of fuel. N Engl J Med 356: 1140-1151. doi:10.1056/NEJMra063052. PubMed: 17360992.
[7]
Finck BN, Kelly DP (2007) Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) regulatory cascade in cardiac physiology and disease. Circulation 115: 2540-2548. doi:10.1161/CIRCULATIONAHA.107.670588. PubMed: 17502589.
[8]
Madrazo JA, Kelly DP (2008) The PPAR trio: regulators of myocardial energy metabolism in health and disease. J Mol Cell Cardiol 44: 968-975. doi:10.1016/j.yjmcc.2008.03.021. PubMed: 18462747.
[9]
Huss JM, Imahashi K, Dufour CR, Weinheimer CJ, Courtois M et al. (2007) The nuclear receptor ERRalpha is required for the bioenergetic and functional adaptation to cardiac pressure overload. Cell Metab 6: 25-37. doi:10.1016/j.cmet.2007.06.005. PubMed: 17618854.
[10]
Dufour CR, Wilson BJ, Huss JM, Kelly DP, Alaynick WA et al. (2007) Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERRalpha and gamma. Cell Metab 5: 345-356. doi:10.1016/j.cmet.2007.03.007. PubMed: 17488637.
[11]
Liu N, Olson EN (2010) MicroRNA regulatory networks in cardiovascular development. Dev Cell 18: 510-525. doi:10.1016/j.devcel.2010.03.010. PubMed: 20412767.
[12]
Gurha P, Abreu-Goodger C, Wang T, Ramirez MO, Drumond AL et al. (2012) Targeted Deletion of MicroRNA-22 Promotes Stress-Induced Cardiac Dilation and Contractile Dysfunction. Circulation 125: 2751-2761. doi:10.1161/CIRCULATIONAHA.111.044354. PubMed: 22570371.
[13]
Huang ZP, Chen J, Seok HY, Zhang Z, Kataoka M et al. (2013) MicroRNA-22 Regulates Cardiac Hypertrophy and Remodeling in Response to Stress. Circ Res 112: 1234-1243. doi:10.1161/CIRCRESAHA.112.300682. PubMed: 23524588.
[14]
Jentzsch C, Leierseder S, Loyer X, Flohrschütz I, Sassi Y et al. (2012) A phenotypic screen to identify hypertrophy-modulating microRNAs in primary cardiomyocytes. J Mol Cell Cardiol 52: 13-20. doi:10.1016/j.yjmcc.2011.07.010. PubMed: 21801730.
[15]
Voigt N, Li N, Wang Q, Wang W, Trafford AW et al. (2012) Enhanced sarcoplasmic reticulum Ca2+ leak and increased Na+-Ca2+ exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation. Circulation 125: 2059-2070. doi:10.1161/CIRCULATIONAHA.111.067306. PubMed: 22456474.
[16]
Iliopoulos D, Malizos KN, Oikonomou P, Tsezou A (2008) Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLOS ONE 3: e3740. doi:10.1371/journal.pone.0003740. PubMed: 19011694.
[17]
Xu D, Takeshita F, Hino Y, Fukunaga S, Kudo Y et al. (2011) miR-22 represses cancer progression by inducing cellular senescence. J Cell Biol 193: 409-424. doi:10.1083/jcb.201010100. PubMed: 21502362.
[18]
Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460: 479-486. PubMed: 19536157.
[19]
Arany Z, He H, Lin J, Hoyer K, Handschin C et al. (2005) Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. Cell Metab 1: 259-271. doi:10.1016/j.cmet.2005.03.002. PubMed: 16054070.
[20]
Arany Z, Novikov M, Chin S, Ma Y, Rosenzweig A et al. (2006) Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-gamma coactivator 1alpha. Proc Natl Acad Sci U S A 103: 10086-10091. doi:10.1073/pnas.0603615103. PubMed: 16775082.
[21]
Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM et al. (2000) Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 106: 847-856. doi:10.1172/JCI10268. PubMed: 11018072.
[22]
Oka S, Alcendor R, Zhai P, Park JY, Shao D et al. (2011) PPARalpha-Sirt1 complex mediates cardiac hypertrophy and failure through suppression of the ERR transcriptional pathway. Cell Metab 14: 598-611. doi:10.1016/j.cmet.2011.10.001. PubMed: 22055503.
[23]
Amat R, Planavila A, Chen SL, Iglesias R, Giralt M et al. (2009) SIRT1 controls the transcription of the peroxisome proliferator-activated receptor-gamma Co-activator-1alpha (PGC-1alpha) gene in skeletal muscle through the PGC-1alpha autoregulatory loop and interaction with MyoD. J Biol Chem 284: 21872-21880. doi:10.1074/jbc.M109.022749. PubMed: 19553684.
[24]
Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim SH et al. (2007) Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J 26: 1913-1923. doi:10.1038/sj.emboj.7601633. PubMed: 17347648.
[25]
Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13: 225-238. PubMed: 22395773.
[26]
Sucharov C, Bristow MR, Port JD (2008) miRNA expression in the failing human heart: functional correlates. J Mol Cell Cardiol 45: 185-192. doi:10.1016/j.yjmcc.2008.04.014. PubMed: 18582896.
[27]
Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S et al. (2007) MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116: 258-267. doi:10.1161/CIRCULATIONAHA.107.687947. PubMed: 17606841.
[28]
Matkovich SJ, Van Booven DJ, Youker KA, Torre-Amione G, Diwan A et al. (2009) Reciprocal regulation of myocardial microRNAs and messenger RNA in human cardiomyopathy and reversal of the microRNA signature by biomechanical support. Circulation 119: 1263-1271. doi:10.1161/CIRCULATIONAHA.108.813576. PubMed: 19237659.