全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Pelagic Life and Depth: Coastal Physical Features in West Africa Shape the Genetic Structure of the Bonga Shad, Ethmalosa fimbriata

DOI: 10.1371/journal.pone.0077483

Full-Text   Cite this paper   Add to My Lib

Abstract:

The bonga shad, Ethmalosa fimbriata, is a West African pelagic species still abundant in most habitats of its distribution range and thought to be only recently affected by anthropogenic pressure (habitat destruction or fishing pressure). Its presence in a wide range of coastal habitats characterised by different hydrodynamic processes, represents a case study useful for evaluating the importance of physical structure of the west African shoreline on the genetic structure of a small pelagic species. To investigate this question, the genetic diversity of E. fimbriata was assessed at both regional and species range scales, using mitochondrial (mt) and nuclear DNA markers. Whereas only three panmictic units were identified with mtDNA at the large spatial scale, nuclear genetic markers (EPIC: exon-primed intron-crossing) indicated a more complex genetic pattern at the regional scale. In the northern-most section of shad’s distribution range, up to 4 distinct units were identified. Bayesian inference as well as spatial autocorrelation methods provided evidence that gene flow is impeded by the presence of deep-water areas near the coastline (restricting the width of the coastal shelf), such as the Cap Timiris and the Kayar canyons in Mauritania and Senegal, respectively. The added discriminatory power provided by the use of EPIC markers proved to be essential to detect the influence of more subtle, contemporary processes (e.g. gene flow, barriers, etc.) acting within the glacial refuges identified previously by mtDNA.

References

[1]  Swartz W, Sala E, Tracey S, Watson R, Pauly D (2010) The spatial expansion and ecological footprint of fisheries (1950 to present). PLoS One 5: e15143.
[2]  FAO (2010) The state of world fisheries and aquaculture. Rome, Italy: FAO. 197pp.
[3]  Alder J, Sumaila UR (2004) Western Africa: A Fish Basket of Europe Past and Present. J Environ Dev 13: 156–178. doi:10.1177/1070496504266092.
[4]  Gascuel D, Ménard F (1997) Assessment of a multispecies fishery in Senegal, using production models and diversity indices. Aquat Living Resour 10: 281-288. doi:10.1051/alr:1997031.
[5]  Christensen V, Amorim P, Diallo I, Diouf T, Guénette S et al. (2004) Trends in fish biomass off northwest Africa. In MLD PalomaresD. Pauly. West African Marine Ecosystems: Models and Fisheries Impacts. Fisheries Center Research Report 12(7). Fisheries Center, UBC, Vancouver. pp. 215-220.
[6]  Laurans M, Gascuel D, Chassot E, Thiam D (2004) Changes in the trophic structure of fish demersal communities in West Africa in the three last decades. Aquat Living Resour 17: 163-173. doi:10.1051/alr:2004023.
[7]  Gascuel D, Labrosse P, Meissa B, Sidl MOT, Guenette S (2007) Decline of demersal resources in North-West Africa: an analysis of Mauritanian trawl-survey data over the past 25 years. Afr J Mar Sci 29: 331-345. doi:10.2989/AJMS.2007.29.3.3.333.
[8]  Atkinson LJ, Leslie RW, Field JG, Jarre A (2011) Changes in demersal fish assemblages on the west coast of South Africa, 1986-2009. Afr J Mar Sci 33: 157-170. doi:10.2989/1814232X.2011.572378.
[9]  Angelini R, Vaz-Velho F (2011) Ecosystem structure and trophic analysis of Angolan fishery landings. Sci Marina 75: 309-319.
[10]  Cheung WWL, Lam VWY, Sarmiento JL, Kearney K, Watson R et al. (2010) Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob Change Biol 16: 24-35. doi:10.1111/j.1365-2486.2009.01995.x.
[11]  Blanchard JL, Jennings S, Holmes R, Harle J, Merino G et al. (2012) Potential consequences of climate change for primary production and fish production in large marine ecosystems. Phil Trans R Soc London [Biol] 367: 2979-2989.
[12]  Allison EH, Perry AL, Badjeck MC, Adger WN, Brown K et al. (2009) Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fish 10: 173-196. doi:10.1111/j.1467-2979.2008.00310.x.
[13]  Perry RI, Ommer RE, Barange M, Jentoft S, Neis B et al. (2011) Marine social–ecological responses to environmental change and the impacts of globalization. Fish Fish 12: 427-450. doi:10.1111/j.1467-2979.2010.00402.x.
[14]  Lam VWY, Cheung WWL, Swartz W, Sumaila UR (2012) Climate change impacts on fisheries in West Africa: implications for economic, food and nutritional security. Afr J Mar Sci 34: 103-117. doi:10.2989/1814232X.2012.673294.
[15]  DuBois C, Zografos C (2012) Conflicts at sea between artisanal and industrial fishers: Inter-sectoral interactions and dispute resolution in Senegal. Mar Policy 36: 1211-1220. doi:10.1016/j.marpol.2012.03.007.
[16]  Cadrin SX, Friedland KD, Waldman JR (2005) Stock identification methods. Applications in fishery Science. Elsevier Academic Press, Amsterdam, The Netherlands. 719 pp.
[17]  Hauser L, Carvalho GR (2008) Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish Fish 9: 333-362. doi:10.1111/j.1467-2979.2008.00299.x.
[18]  Waples RS, Punt AE, Cope JM (2008) Integrating genetic data into management of marine resources: how can we do it better? Fish Fish 9: 423-449. doi:10.1111/j.1467-2979.2008.00303.x.
[19]  Reiss H, Hoarau G, Dickey-Collas M, Wolff WJ (2009) Genetic population structure of marine fish: mismatch between biological and fisheries management units. Fish Fish 10: 361–395. doi:10.1111/j.1467-2979.2008.00324.x.
[20]  Spalding MD, Fox HE, Halpern BS, McManus MA, Molnar J et al. (2007) Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. BioScience 57: 573-583.
[21]  Briggs JC, Bowen BW (2012) A realignment of marine biogeographic provinces with particular reference to fish distributions. J Biogeogr 39: 12-30. doi:10.1111/j.1365-2699.2011.02613.x.
[22]  Atarhouch T, Rüber L, Gonzalez EG, Albert EM, Rami M et al. (2006) Signature of an early genetic bottleneck in a population of Moroccan sardines (Sardina pilchardus). Mol Phylogenet Evol 39: 373-383. doi:10.1016/j.ympev.2005.08.003. PubMed: 16216537.
[23]  Chlaida M, Laurent V, Kifani S, Benazzou T, Jaziri H et al. (2009) Evidence of a genetic cline for Sardina pilchardus along the Northwest African coast. ICES J Mar Sci 66: 264-271.
[24]  Durand JD, Collet A, Chow S, Guinand B, Borsa P (2005a) Nuclear and mitochondrial DNA markers indicate unidirectional gene flow of Indo-Pacific to Atlantic bigeye tuna (Thunnus obesus) populations, and their admixture off southern Africa. Mar Biol 147: 313-322. doi:10.1007/s00227-005-1564-2.
[25]  Teske PR, von der Heyden S, McQuaid CD, Barker NP (2011) A review of marine phylogeography in southern Africa. S Afr J Mar Sci 107: 43-53.
[26]  Henriques R, Potts WM, Sauer WHH, Shaw PW (2012) Evidence of deep genetic divergence between populations of an important recreational fishery species, Lichia amia L. 1758, around southern Africa. Afr J Mar Sci 34: 585-591.
[27]  Gourène B, Pouyaud L, Agnèse JF (1993) Importance de certaines caractéristiques biologiques dans la structuration génétique des espèces de poissons: le cas de Ethmalosa fimbriata et de Sarotherodon melanotheron. J Ivoir Océanol Limnol 2: 69-83.
[28]  Pouyaud L, Agnèse JF (1995) Différenciation génétique des populations de Sarotherodon melanotheron, Rüppell, 1853. In: JF Agnèse. Comptes rendus de l'atelier biodiversité et aquaculture, Abidjan: CRO. pp. 60-65.
[29]  Pouyaud L, Agnèse JF (1996) Différenciation génétique de plusieurs populations de Sarotherodon melanotheron et Tilapia guineensis de C?te d'Ivoire, du Sénégal et de Gambie. In: Pullin RSV, Lazard J, Legendre M, Amon Kothias JB, Pauly D, editors. Third International Symposium on Tilapia in Aquaculture. ICLARM. Conf Proc 41 , pp. 408-416.
[30]  Sardinha MI, Naevdal G (2002) Population genetic studies of horse mackerel Trachurus trecae and Trachurus trachurus capensis off Angola. S Afr J Mar Sci 24: 49-56. doi:10.2989/025776102784528303.
[31]  Chikhi L, Bonhomme F, Agnese JF (1998) Low genetic variability in a widely distributed and abundant clupeid species, Sardinella aurita. New empirical results and interpretations. J Fish Biol 52: 861-878. doi:10.1006/jfbi.1997.0637.
[32]  Durand JD, Tine M, Panfili J, Thiaw OT, Lae R (2005b) Impact of glaciations and geographic distance on the genetic structure of a tropical estuarine fish, Ethmalosa fimbriata (Clupeidae, S. Bowdich, 1825). Mol Phylogenet Evol 36: 277-287. doi:10.1016/j.ympev.2005.01.019.
[33]  Hauser L, Seeb JE (2008) Advances in molecular technology and their impact on fisheries genetics. Fish Fish 9: 473-486. doi:10.1111/j.1467-2979.2008.00306.x.
[34]  Charles-Dominique E, Albaret JJ (2003) African shads, with emphasis on the West African shad Ethmalosa fimbriata. Am Fish Soc Symp 35: 27-48.
[35]  Ama-Abasi D, Holzloehner S, Enin U (2004) The dynamics of the exploited population of Ethmalosa fimbriata (Bowdich, 1825, Clupeidae) in the Cross River Estuary and adjacent Gulf of Guinea. Fish Res 68: 225-235. doi:10.1016/j.fishres.2003.12.002.
[36]  Longhurst AR (1960) Local movements of Ethmalosa fimbriata of Sierra Leone from tagging data. Bull Inst Fr Afr Noire 22: 1337-1340.
[37]  Toresen R, Sarre A, Mbye EM, Olsen M (2002a) Survey of the pelagic fish resources off north west AfricaPart 1 Senegal - The Gambia 29 October - 7 November 2002. Institute of Marine Research, Bergen, Norway; Centre de Recherches Océanographiques de Dakar Thiaroye, Dakar, Sénégal; Department of Fisheries, Banjul, The Gambia.
[38]  Toresen R, Sarre A, Mbye EM, Olsen M (2002b) Survey of the pelagic fish resources off north west AfricaPart 1 Senegal - The Gambia 30 June - 8 July 2002. Institute of Marine Research, Bergen, Norway; Centre de Recherches Océanographiques de Dakar Thiaroye, Dakar, Sénégal; Department of Fisheries, Banjul, The Gambia.
[39]  Toresen R, Sarre A, Mbye EM, Olsen M (2003) Survey of the pelagic fish resources off north west AfricaPart 1 Senegal - The Gambia 27 June - 7 July 2003. Institute of Marine Research, Bergen, Norway; Centre de Recherches Océanographiques de Dakar Thiaroye, Dakar, Sénégal; Department of Fisheries, Banjul, The Gambia.
[40]  Sevrin-Reyssac J, Richer de Forges B (1985) Particularités de la faune ichtyologique dans un milieu sursalé du parc national du banc d’Arguin (Mauritanie). Océanographie Tropicale 1: 85-90.
[41]  Hooghiemstra H, Agwu COC, Beug HJ (1986) Pollen and spore distribution in recent marine sediments: a record of NW-African seasonal wind patterns and vegetation belts. ‘Meteor’Forschungs Ergebnisse, Reihe C 40: 87–135.
[42]  Hooghiemstra H, Lézine AM, Leroy SAG, Dupont L, Marret F (2006) Late Quaternary palynology in marine sediments: A synthesis of the understanding of pollen distribution patterns in the NW African setting. Quat Int 148: 29-44. doi:10.1016/j.quaint.2005.11.005.
[43]  Panfili J, Durand JD, Mbow A, Guinand B, Diop K et al. (2004a) Influence of salinity on life history traits of the bonga shad Ethmalosa fimbriata (Pisces, Clupeidae): comparison between the Gambia and Saloum estuaries. Mar Ecol Prog Ser 270: 241–257. doi:10.3354/meps270241.
[44]  Panfili J, Mbow A, Durand J-D, Diop K, Diouf K et al. (2004b) Influence of salinity on the life-history traits of the West African black-chinned tilapia (Sarotherodon melanotheron): comparison between the Gambia and Saloum estuaries. Aquat Living Resour 17: 65–74. doi:10.1051/alr:2004002.
[45]  Simier M, Blanc L, Aliaume C, Diouf PS, Albaret JJ (2004) Spatial and temporal structure of fish assemblages in an "inverse estuary", the Sine Saloum system (Senegal). Est Coast Shelf Sci 59: 69-86. doi:10.1016/j.ecss.2003.08.002.
[46]  Hassan M, Lemaire C, Fauvelot C, Bonhomme F (2002) Seventeen new exon-primed intron-crossing polymerase chain reaction amplifiable introns in fish. Mol Ecol Notes 2: 334-340. doi:10.1046/j.1471-8286.2002.00236.x.
[47]  Chow S, Takeyama H (1998) Intron length variation observed in the creatine kinase and ribosomal protein genes of the swordfish (Xiphias gladius). Fish Sci 64: 397-402.
[48]  Altschul SF, Madden TL, Sch?ffer AA, Zhang J, Zhang Z et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389-3402. doi:10.1093/nar/25.17.3389. PubMed: 9254694.
[49]  Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000. Université de Montpellier II; Montpellier.
[50]  Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38: 1358-1370. doi:10.2307/2408641.
[51]  Wright S (1951) The genetical structure of populations. Ann Eugen 15: 323-354.
[52]  Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MicroChecker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4: 535-538. doi:10.1111/j.1471-8286.2004.00684.x.
[53]  Brookfield JFY (1996) A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol 5: 453-455. doi:10.1046/j.1365-294X.1996.00098.x. PubMed: 8688964.
[54]  Rousset F (2008) GENEPOP’ 007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8: 103-106. doi:10.1111/j.1471-8286.2007.01931.x. PubMed: 21585727.
[55]  Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10: 305-318. doi:10.1046/j.1365-294x.2001.01190.x. PubMed: 11298947.
[56]  Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M et al. (1994) Mutational-processes of single-sequence repeat loci in human populations. Proc Natl Acad Sci U S A 91: 3166-3170. doi:10.1073/pnas.91.8.3166. PubMed: 8159720.
[57]  Guinand B, Scribner KT (2003) Evaluation of methodology for detection of genetic bottlenecks: inferences from temporally replicated lake trout populations. C R Biol 326: S61-S67. doi:10.1016/S1631-0691(03)00039-8. PubMed: 14558451.
[58]  Sokal RR, Rohlf FJ (1995) Biometry, the principles and practice of statistics in biological research, 3rd edn. New York: Freeman and Co.. p. 937.
[59]  Chen C, Durand E, Forbes F, Fran?ois O (2007) Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol Ecol Notes 7: 747-756. doi:10.1111/j.1471-8286.2007.01769.x.
[60]  Fran?ois O, Durand E (2010) Spatially explicit Bayesian clustering models in population genetics. Mol Ecol Resour 10: 773-784. doi:10.1111/j.1755-0998.2010.02868.x. PubMed: 21565089.
[61]  Durand E, Jay F, Gaggiotti OE, Fran?ois O (2009) Spatial inference of admixture proportions and secondary contact zones. Mol Biol Evol 26: 1963-1973. doi:10.1093/molbev/msp106. PubMed: 19461114.
[62]  Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23: 1801-1806. doi:10.1093/bioinformatics/btm233. PubMed: 17485429.
[63]  Manni F, Guérard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: How barriers can be detected by using Monmonier’s algorithm. Hum Biol 76: 173-190. doi:10.1353/hub.2004.0034. PubMed: 15359530.
[64]  Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145: 1219-1428. PubMed: 9093870.
[65]  Beerli P (2008) MIGRATE documentation (version 3.0). Technical Report. http://popgen.sc.fsu.edu. Accessed 2013 September 17.
[66]  Beerli P, Felsenstein J (1999) Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genetics 152: 763-773. PubMed: 10353916.
[67]  Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci U S A 98: 4563-4568. doi:10.1073/pnas.081068098. PubMed: 11287657.
[68]  Weber JL, Wong C (1993) Mutation of human short tandem repeats. Hum Mol Genet 2: 1123-1128. doi:10.1093/hmg/2.8.1123. PubMed: 8401493.
[69]  Ellegren H (2000) Microsatellite mutations in the germline: implications for evolutionary inference. Trends Genet 16: 551-558. doi:10.1016/S0168-9525(00)02139-9. PubMed: 11102705.
[70]  Payseur BA, Jing P, Haasl RJ (2011) A genomic portrait of human microsatellite variation. Mol Biol Evol 28: 303-312. doi:10.1093/molbev/msq198. PubMed: 20675409.
[71]  Buonaccorsi VP, McDowell JR, Graves JE (2001) Reconciling patterns of inter-ocean molecular variance from four classes of molecular markers in blue marlin (Makaira nigricans). Mol Ecol 10: 1179-1196. doi:10.1046/j.1365-294X.2001.01270.x. PubMed: 11380876.
[72]  Larmuseau MHD, Raeymaekers JAM, Hellemans B, Van Houdt JKJ, Volckaert FAM (2010) Mito-nuclear discordance in the degree of population differentiation in a marine goby. Heredity 105: 532-542. doi:10.1038/hdy.2010.9. PubMed: 20145668.
[73]  Canino MF, Spies IB, Lowe SA, Grant WS (2010) Highly discordant nuclear and mitochondrial DNA diversities in Atka mackerel. Mar Coast Fish Dynam Manag Ecosys Sci 2: 375-387. doi:10.1577/C09-024.1.
[74]  Slatkin M (1993) Isolation by distance in equilibrium and non equilibrium populations. Evolution 47: 264-279. doi:10.2307/2410134.
[75]  Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: Inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53: 1898-1914. doi:10.2307/2640449.
[76]  Crow JF, Aoki K (1984) Group selection for a polygenic behavioral trait – estimating the degree of population subdivision. Proc Natl Acad Sci U S A 81: 6073-6077. doi:10.1073/pnas.81.19.6073. PubMed: 6592602.
[77]  Castric V, Bernatchez L (2003) The rise and fall of isolation by distance in the anadromous brook charr (Salvelinus fontinalis Mitchill). Genetics 163: 983-996. PubMed: 12663537.
[78]  Blay J Jr, Eyeson KN (1982) Observations on the reproductive biology of the shad, Ethmalosa fimbriata (Bowdich) in the Coastal waters of Cape Coast, Ghana. J Fish Biol 21: 485-496. doi:10.1111/j.1095-8649.1982.tb02854.x.
[79]  N’goran Ya N (1991) Reproduction de Ethmalosa fimbriata (Bowdich) en Lagune Aby (C?te d’Ivoire). J Ivoir Océanol Limnol Abidjan. 1: 23-32.
[80]  Scheffers WJ, Conand F, Reizer C (1972) Etude de Ethmalosa fimbriata (Bowdich) dans la région sénégambienne. 1re note : Reproduction et lieux de ponte dans le fleuve Senégal et la region de Saint-Louis. Doc. Sci. Provis. Cent. Rech. Océanogr. Dakar Thiaroye, O.R.S.T.O.M. 44: 21.
[81]  Scheffers WJ, Conand F (1976) A study on Ethmalosa fimbriata (Bowdich) in the Senegambian region. 3rd note: The biology of the Ethmalosa in the Gambian waters. Doc Sci Provis Cent Rech Océanogr Dakar Thiaroye, O.R.S.T.O.M.59: 19.
[82]  Barton NH, Hewitt GM (1985) Analysis of hybrid zones. Annu Rev Ecol Syst 16: 113-148. doi:10.1146/annurev.es.16.110185.000553.
[83]  Marko PB, Hart MW (2011) The complex analytical landscape of gene flow inference. Trends Ecol Evol 26: 448-456. doi:10.1016/j.tree.2011.05.007. PubMed: 21722987.
[84]  Barry-Gérard M (1990) Le complexe fosse de Kayar-Presqu’ile du Cap Vert constitue t'il un obstacle aux migrations des poissons le long des c?tes sénégalaises? In: CdROd Dakar-Tiaroye. Institut Sénégalais de Recherches Agricoles, Dakar. pp. 34.
[85]  Bradbury IR, Campana SE, Bentzen P (2008a) Estimating contemporary early life-history dispersal in an estuarine fish: integrating molecular and otolith elemental approaches. Mol Ecol 17: 1438-1450. doi:10.1111/j.1365-294X.2008.03694.x.
[86]  Hasselman DJ, Ricard D, Bentzen P (2013) Genetic diversity and differentiation in a wide ranging anadromous fish, American shad (Alosa sapidissima), is correlated with latitude. Mol Ecol 22: 1558-1573. doi:10.1111/mec.12197. PubMed: 23379260.
[87]  Bradbury I, Coulson MW, Campana SE, Paterson IG, Bentzen P (2011) Contemporary nuclear and mitochondrial DNA clines in a north temperate estuarine fish reflect Pleistocene vicariance. Mar Ecol Prog Ser 438: 207–218. doi:10.3354/meps09286.
[88]  Bradbury IR, Bentzen P (2007) Non-linear genetic isolation by distance: implications for dispersal estimation in anadromous and marine fish populations. Mar Ecol Prog Ser 340: 245–257. doi:10.3354/meps340245.
[89]  Fogarty MJ, Botsford LW (2007) Population connectivity and spatial management of marine fisheries. J Oceanogr 20: 112–123. doi:10.5670/oceanog.2007.34.
[90]  Bradbury IR, Campana SE, Bentzen (2008b) Low genetic connectivity in an estuarine fish with pelagic larvae. Can J Fish Aquat Sci 65: 147-158. doi:10.1139/f07-154.
[91]  Berumen ML, Walsh HJ, Raventos N, Planes S, Jones GP et al. (2010) Otolith geochemistry does not reflect dispersal history of clownfish larvae. Coral Reefs 29: 883–891. doi:10.1007/s00338-010-0652-z.
[92]  Gray CA, Haddy JA, Fearman J, Barnes ML, Macbeth WG et al. (2012) Reproduction, growth and connectivity among populations of Girella tricuspidata (Pisces: Girellidae). Aquatic Biol 16: 53-68. doi:10.3354/ab00428.
[93]  Galindo HM, Olson DB, Palumbi SR (2006) Seascape genetics: a coupled oceanographic–genetic model predicts population structure of Caribbean corals. Curr Biol 16: 622–1626.
[94]  Puebla O, Bermingham E, McMillan WO (2012) On the spatial scale of dispersal in coral reef fishes. Mol Ecol 21: 5675-5688. doi:10.1111/j.1365-294X.2012.05734.x. PubMed: 22994267.
[95]  Neubauer P, Jensen OP, Hutchings JA, Baum JK (2013) Resilience and recovery of overexploited marine populations. Science 340: 347-349. doi:10.1126/science.1230441. PubMed: 23599493.
[96]  Pauly D, McLean J (2003) In a perfect ocean: the state of fisheries and ecosystems in the North Atlantic Ocean. Washington, DC: Island Press. pp. 208.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133