This work describes the characterization of plasmid-mediated quinolone-resistance (PMQR) genes from a multicenter study of ESBL-producing Enterobacteriaceae pediatric clinical isolates in Mexico. The PMQR gene-positive isolates were characterized with respect to ESBLs, and mutations in the GyrA and ParC proteins were determined. The phylogenetic relationship was established by PFGE and the transfer of PMQR genes was determined by mating assays. The prevalence of the PMQR genes was 32.1%, and the rate of qnr-positive isolates was 15.1%; 93.3% of the latter were qnrB and 6.4% were qnrA1. The distribution of isolates in terms of bacterial species was as follows: 23.5% (4/17) corresponded to E. cloacae, 13.7% (7/51) to K. pneumoniae, and 13.6% (6/44) to E. coli. In addition, the prevalence of aac(6’)-Ib-cr and qepA was 15.1% and 1.7%, respectively. The molecular characteristics of qnr- and qepA-positive isolates pointed to extended-spectrum β-lactamase (ESBL) CTX-M-15 as the most prevalent one (70.5%), and to SHV-12 in the case of aac(6’)-Ib-cr-positive isolates. GyrA mutations at codons Ser-83 and Asp-87, and ParC mutations at codons Ser-80 were observed in 41.1% and 35.2% of the qnr-positive isolates, respectively. The analysis of the transconjugants revealed a co-transmission of blaCTX-M-15 with the qnrB alleles. In general, the prevalence of PMQR genes (qnr and aac(6’)-Ib-cr) presented in this work was much lower in the pediatric isolates, in comparison to the adult isolates in Mexico. Also, ESBL CTX-M-15 was the main ESBL identified in the pediatric isolates, whereas in the adult ones, ESBLs corresponded to the CTX-M and the SHV families. In comparison with other studies, among the PMQR-genes identified in this study, the qnrB-alleles and the aac(6’)-Ib-cr gene were the most prevalent, whereas the qnrS1, qnrA1 and qnrB-like alleles were the most prevalent in China and Uruguay.
References
[1]
Wirtz VJ, Dreser A, Gonzales R (2009) Trens in antibiotic utilization in eight Latin American countries, 1997-2007. Rev Panam Salud Publica 27: 219-225.
[2]
Barrios H, Garza-Ramos U, Ochoa-Sanchez LE, Reyna-Flores F, Rojas-Moreno T et al. (2012) A plasmid-encoded class 1 integron contains GES-type extended-spectrum β-lactamases in Enterobacteriaceae clinical isolates in Mexico. Antimicrob Agents Chemother 56: 4032-4034. doi:10.1128/AAC.05980-11. PubMed: 22526300.
[3]
Mosqueda-Gómez JL, Monta?o-Loza A, Rolón AL, Cervantes C, Bobadilla-del-Valle JM et al. (2008) Molecular epidemiology and risk factors of bloodstream infections caused by extended-spectrum β-lactamase-producing Klebsiella pneumoniae A case-control study. Int J Infect Dis 12: 653-659. doi:10.1016/j.ijid.2008.03.008. PubMed: 18511321.
[4]
Zhanel GG, Ennis K, Vercaigne L, Walkty A, Gin AS et al. (2002) A critical review of the fluoroquinolones: focus on respiratory infections. Drugs 62: 13-59. doi:10.2165/00003495-200262010-00002. PubMed: 11790155.
[5]
Drlica K, Zhao X (1997) DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev 61: 377-392. PubMed: 9293187.
[6]
Tran JH, Jacoby GA (2002) Mechanism of plasmid-mediated quinolone resistance. Proc Natl Acad Sci U S A 99: 5638-5642. doi:10.1073/pnas.082092899. PubMed: 11943863.
[7]
Martínez-Martínez L, Eliecer CM, Rodriguez-Martinez Manuel J; Calvo J, Pascual A (2008) Plasmid-mediated quinolone resistance. Expert Rev Anti Infect Ther 6: 685-711. doi:10.1586/14787210.6.5.685. PubMed: 18847406. doi:10.1586/14787210.6.5.685. PubMed: 18847406.
Robicsek A, Jacoby GA, Hooper DC (2006) The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis 6: 629-640. doi:10.1016/S1473-3099(06)70599-0. PubMed: 17008172.
[11]
Zhao X, Xu C, Domagala J, Drlica K (1997) DNA topoisomerase targets of the fluoroquinolones: a strategy for avoiding bacterial resistance. Proc Natl Acad Sci U S A 94: 13991-13996. doi:10.1073/pnas.94.25.13991. PubMed: 9391140.
[12]
Silva-Sanchez J, Barrios H, Reyna-Flores F, Bello-Diaz M, Sanchez-Perez A et al. (2011) Prevalence and characterization of plasmid-mediated quinolone resistance genes in extended-spectrum beta-lactamase-producing Enterobacteriaceae isolates in Mexico. Microb Drug Resist 17: 497-505. doi:10.1089/mdr.2011.0086. PubMed: 21834663.
[13]
Langley J (2001) The place of quinolones in paediatric anti-infective therapy. Paediatr Child Health 6: 322-324. PubMed: 20084256.
[14]
Clinical and Laboratory Standards Institute (2012) Methods for Dilution Antimicrobial Susceptibility Test for Bacteria that grown aerobically; Approved. Standard: M07-MA9.
[15]
Cattoir V, Poirel L, Rotimi V, Soussy CJ, Nordmann P (2007) Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J Antimicrob Chemother 60: 394-397. doi:10.1093/jac/dkm204. PubMed: 17561500.
[16]
Miller JM (1972) Experiments in Molecular Genetics. NY.: Cold Spring Harbor Laboratory.
[17]
Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL et al. (2005) Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 63: 219-228. doi:10.1016/j.mimet.2005.03.018. PubMed: 15935499.
[18]
García-Fernández A, Fortini D, Veldman K, Mevius D, Carattoli A (2009) Characterization of plasmids harbouring qnrS1, qnrB2 and qnrB19 genes in Salmonella. J Antimicrob Chemother 63: 274-281. PubMed: 19001452.
[19]
Kieser T (1984) Factors affecting the isolation of CCC DNA from Streptomyces lividans and Escherichia coli. Plasmid 12: 19-36. doi:10.1016/0147-619X(84)90063-5. PubMed: 6387733.
[20]
Philippon LN, Naas T, Bouthors AT, Barakett V, Nordmann P (1997) OXA-18, a class D clavulanic acid-inhibited extended-spectrum beta-lactamase from Pseudomonas aeruginosa. Antimicrob Agents Chemother 41: 2188-2195. PubMed: 9333046.
[21]
Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE et al. (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33: 2233-2239. PubMed: 7494007.
[22]
Kaufmann ME (1998) Pulsed-field gel electrophoresis. Methods Mol Med 15: 33-50. PubMed: 21390741.
[23]
Andersson MI, MacGowan AP (2003) Development of the quinolones. J Antimicrob Chemother 51 Suppl 1: 1-11. doi:10.1093/jac/dkg212. PubMed: 12702698.
[24]
Emmerson AM, Jones AM (2003) The quinolones: decades of development and use. J Antimicrob Chemother 51 Suppl 1: 13-20. doi:10.1093/jac/dkg044. PubMed: 12702699.
[25]
Robicsek A, Strahilevitz J, Jacoby GA, Macielag M, Abbanat D et al. (2006) Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med 12: 83-88. doi:10.1038/nm1347. PubMed: 16369542.
[26]
Han C, Yang Y, Wang M, Lu Q, Xu X et al. (2010) The prevalence of plasmid-mediated quinolone resistance determinants among clinical isolates of ESBL or AmpC-producing Escherichia coli from Chinese pediatric patients. Microbiol Immunol 54: 123-128. doi:10.1111/j.1348-0421.2010.00200.x. PubMed: 20236421.
[27]
García-Fulgueiras V, Bado I, Mota MI, Robino L, Cordeiro NF et al. (2011) Extended-spectrum beta-lactamases and plasmid-mediated quinolone resistance in enterobacterial clinical isolates in the paediatric hospital of Uruguay. J Antimicrob Chemother 66: 1725-1729. doi:10.1093/jac/dkr222. PubMed: 21685201.
[28]
Garza-Ramos U, Barrios H, Hernandez-Vargas MJ, Rojas-Moreno T, Reyna-Flores F et al. (2012) Transfer of quinolone resistance gene qnrA1 to Escherichia coli through a 50 kb conjugative plasmid resulting from the splitting of a 300 kb plasmid. J Antimicrob Chemother 67: 1627-1634. doi:10.1093/jac/dks123. PubMed: 22514263.