[1] | Daufresne M, Roger MC, Capra H, Lamouroux N (2004) Long-term changes within the invertebrate and fish communities of the Upper Rh?ne River: Effects of climatic factors. Global Change Biology 10: 124–140 doi: 10.1046/j.1529-8817.2003.00720.x.
|
[2] | Winder M, Schindler DE (2004) Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85: 2100–2106 doi: 10.1890/04-0151.
|
[3] | Rosset V, Oertli B (2011) Freshwater biodiversity under climate warming pressure: Identifying the winners and losers in temperate standing waterbodies. Biological Conservation 144: 2311–2319 doi: 10.1016/j.biocon.2011.06.009.
|
[4] | IPPC (2007) Climate change 2007. In: Pachauri RK, Resinger A (eds) Contribution of working groups I, II and III to the fourth assessment report of the international panel on climate change, Switzerland.
|
[5] | Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37–42 doi: 10.1038/nature01286.
|
[6] | Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, et al. (2005) Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs 75: 3–35 doi: 10.1890/04-0922.
|
[7] | Somero GN (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. The Journal of Experimental Biology 213: 912–920 doi: 10.1242/jeb.037473.
|
[8] | Van der Putten WH (2012) Climate change, aboveground-belowground interactions, and species' range shifts. The Annual Review of Ecology, Evolution and Systematics 43: 365–383 doi: 10.1146/annurev-ecolsys-110411-160423.
|
[9] | Traill LW, Lim MLM, Sodhi NS, Bradshaw CJA (2010) Mechanisms driving change: altered species interactions and ecosystems. Journal of Animal Ecology 79: 937–947 doi: 10.1111/j.1365-2656.2010.01695.x.
|
[10] | Costa FO, Costa MH (1999) Life history of the amphipod Gammarus locusta in the Sado estuary (Portugal). Acta oecologica 20: 305–314 doi: 10.1016/S1146-609X(99)00136-8.
|
[11] | Stillman JH, Somero GN (2000) A comparative analysis of the upper thermal tolerance limits of eastern Pacific porcelain crabs, genus Petrolisthes: Influences of latitude, vertical zonation, acclimation, and phylogeny. Physiological and Biochemical Zoology 73: 200–208 doi: 10.1086/316738.
|
[12] | P?rtner HO, Storch D, Heilmayer O (2005) Constraints and trade-offs in climate-dependent adaptation: energy budgets and growth in a latitudinal cline. Scientia Marina 69: 271–285 doi: 10.3989/scimar.2005.69s2271.
|
[13] | Costa GC, Wolfe C, Shepard DB, Caldwell JP, Vitt LJ (2008) Detecting the influence of climatic variables on species distributions: a test using GIS niche-based model along a steep longitudinal environmental gradient. Journal of Biogeography 35: 637–646 doi: 10.1111/j.1365-2699.2007.01809.x.
|
[14] | Whiteley NM, Rastrick SPS, Lunt DH, Rock J (2011) Latitudinal variations in the physiology of marine gammarid amphipods. Journal of Experimental in Marine Biology and Ecology 400: 70–77 doi: 10.1016/j.jembe.2011.02.027.
|
[15] | Somero GN (2012) The Physiology of Global Change: Linking Patterns to Mechanisms. Annual Review of Marine Science 4: 39–61 doi: 10.1146/annurev-marine-120710-100935.
|
[16] | diLascio A, Rossi L, Constantini ML (2011) Different temperature tolerance of northern and southern European populations of a freshwater Isopod Crustacean species (Asellus aquaticus L.) Fundamental and Applied Limnology. 179: 193–201 doi: 10.1127/1863-9135/2011/0179-0193.
|
[17] | Logan CA, Kost LE, Somero GN (2012) Latitudinal differences in Mytilus californianus thermal physiology. Marine Ecology-Process Series 450: 93–105 doi: 10.3354/meps09491.
|
[18] | Cottin D, Roussel D, Foucreau N, Hervant F, Piscart C (2012) Disentangling the effects of local and regional factors on the thermal tolerance of freshwater crustaceans. Naturwissenschaften 99: 259–264 doi: 10.1007/s00114-012-0894-4.
|
[19] | Moser B, Fridley JD, Askew AP, Grime JP (2011) Simulated migration in a long-term climate change experiment: invasions impeded by dispersal limitation, not biotic resistance. Journal of Ecology 99: 1229–1236 doi: 10.1111/j.1365-2745.2011.01841.x.
|
[20] | Cheaib A, Badeau V, Boe J, Chuine I, Delire C, et al. (2012) Climate change impacts on tree ranges: model intercomparison facilitates understanding and quantification of uncertainty. Ecology letters 15: 533–544 doi: 10.1111/j.1461-0248.2012.01764.x.
|
[21] | Rigling A, Bigler C, Eilmann B, Feldmeyer-Christe E, Gimmi U, et al. (2013) Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. Global Change Biology 19: 229–240 doi: 10.1111/gcb.12038.
|
[22] | Cummins KW (1974) Structure and function of stream ecosystems. BioScience 24: 631–641 doi: 10.2307/1296676.
|
[23] | Vannote R L, Minshall GW, Cummins JR, Sedell JR, Cushing CE (1980) The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137 doi: 10.1139/f80-017.
|
[24] | Graca MAS, Cressa C, Gessner MO, Feio MJ, Callies KA, et al. (2001) Food quality, feeding preferences, survival and growth of shredders from temperate and tropical streams. Freshwater Biology 46: 947–957 doi: 10.1046/j.1365-2427.2001.00729.x.
|
[25] | Abelho M (2008) Effects of leaf litter species on macroinvertebrate colonization during decomposition in a Portuguese stream. International Review of Hydrobiology 93: 358–371 doi: 10.1002/iroh.200711019.
|
[26] | Lecerf A, Dobson M, Dang CK, Chauvet E (2005) Riparian plant species loss alters trophic dynamics in detritus-based stream ecosystems. Oecologia 148: 432–442 doi: 10.1007/s00442-005-0212-3.
|
[27] | Foucreau N, Puijalon S, Hervant F, Piscart C (2013) Effect of leaf litter characteristics on leaf conditioning and on consumption by Gammarus pulex. Freshwater Biology 58: 1672–1681 doi: 10.1111/fwb.
|
[28] | Piscart C, Genoel R, Dolédec S, Chauvet E, Marmonier P (2009) Effects of intense agricultural practices on heterotrophic processes in streams. Environmental Pollution 157: 1011–1018 doi: 10.1016/j.envpol.2008.10.010.
|
[29] | Piscart C, Mermillod-Blondin F, Maazouzi C, Mérigoux S, Marmonier P (2011a) Potential impact of invasive amphipods on leaf litter recycling in aquatic ecosystems. Biological Invasions 13: 2861–2868 doi: 10.1007/s10530-011-9969-y.
|
[30] | Gallardo A, Merino J (1993) Leaf decomposition in two Mediterranean ecosystems of Southwest Spain: influence of substrate quality. Ecology 74: 152–161 doi: 10.2307/1939510.
|
[31] | Canhoto C, Gra?a MAS (1996) Decomposition of Eucalyptus globulus leaves and three native leaf species (Alnus glutinosa, Castanea sativa and Quercus faginea) in a Portugese low order stream. Hydrobiologia 333: 79–85 doi: 10.1007/BF00017570.
|
[32] | Ostrofsky M L (1997) Relationship between chemical characteristics of autumn-shed leaves and aquatic processing rates. Journal of the North American Benthological Society 16: 750–759 doi: 10.2307/1468168.
|
[33] | Onoda Y, Westoby M, Adler PB, Choong AMF, Clissold FJ, et al. (2011) Global patterns of leaf mechanical properties. Ecology letters 14: 301–312 doi: 10.1111/j.1461-0248.2010.01582.x.
|
[34] | Delong MD, Summers RB, JH Thorp (1993) Influence of food type on thegrowth of a riverine amphipod, Gammarus fasciatus. Canadian Journal of Fisheries and Aquatic Sciences 50: 1891–1896 doi: 10.1139/f93-211.
|
[35] | Maazouzi C, Piscart C, Pihan JC, Masson G (2009) Effect of habitat-related resources on fatty acid composition and body weight of the invasive Dikerogammarus villosus in an artificial reservoir. Fundamental and Applied Limnology/Archiv für Hydrobiologie 175: 327–338 doi: 10.1127/1863-9135/2009/0175-0327.
|
[36] | Moretti MS Jr, Gon?alves JF, Callisto M (2007) Leaf breakdown in two tropical streams: differences between single and mixed species packs. Limnologica 37: 250–258 doi: 10.1016/j.limno.2007.01.003.
|
[37] | Torrez-Ruiz M, Wehr JD (2010) Changes in the nutritional quality of decaying leaf litter in a stream based on fatty acid content. Hydrobiologia 651: 265–278 doi: 10.1007/s10750-010-0305-9.
|
[38] | Boyero L, Pearson RG, Gessner MO, Barmuta LA, Ferreira V, et al. (2011) A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecology Letters 14: 289–294 doi: 10.1111/j.1461-0248.2010.01578.x.
|
[39] | Menendez M, Descals E, Riera T, Moya O (2012) Effect of small reservoirs on leaf litter decomposition in Mediterranean headwater streams. Hydrobiologia 691: 315–146 doi: 10.1007/s10750-012-1064-6.
|
[40] | Wesolowsky T, Rowiński P (2006) Timing of bud burst and tree-leaf development in a multispecies temperate forest. Forest Ecology and Management 237: 387–393 doi: 10.1016/j.foreco.2006.09.061.
|
[41] | Kramer K, Vreugdenhil SJ, van der Werf DC (2008) Effects of flooding on the recruitment, damage and mortality of riparian tree species: A field and simulation study on the Rhine floodplain. Forest Ecology and Management 255: 3893–3903 doi: 10.1016/j.foreco.2008.03.044.
|
[42] | De Micco V, Aronne G, Baas P (2008) Wood anatomy and hydraulic architecture of stems and twigs of some Mediterranean trees and shrubs along a mesic-xeric gradient. Trees 22: 643–655 doi: 10.1007/s00468-008-0222-y.
|
[43] | Gulis V, Ferreira V, Gra?a MAS (2006) Stimulation of leaf litter decomposition and associated fungi and invertebrates by moderate eutrophication: implications for stream assessment. Freshwater Biology 51: 1655–1669 doi: 10.1111/j.1365-2427.2006.01615.x.
|
[44] | Dehedin A, Maazouzi C, Puijalon S, Marmonier P, Piscart C (2013) The combined effects of water level reduction and a increase in ammonia concentration on organic matter processing by key freshwater shredders in alluvial wetlands. Global Change Biology 19: 763–774 doi: 10.1111/gcb.12084.
|
[45] | Gessner MO, Chauvet E (1994) Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology 75: 1807–1817 doi: 10.2307/1939639.
|
[46] | Pinkster S (1972) On members of the Gammarus pulex-group (Crustacea-Amphipoda) from Western Europe. Bijdragen Tot de Dierkunde 42: 165–190.
|
[47] | Piscart C, Roussel JM, Dick JTA, Grosbois G, Marmonier P (2011b) Effects of coexistence on the habitat use and trophic ecology of interacting native and invasive amphipods. Freshwater Biology 56: 325–334 doi: 10.1111/j.1365-2427.2010.02500.x.
|
[48] | Lefébure T, Douady CJ, Gouy M, Gibert J (2006) Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimitation. Molecular Phylogenetics and Evolution 40: 435–447 doi: 10.1016/j.ympev.2006.03.014.
|
[49] | Hervant F, Mathieu J, Barre H (1999) Comparative study on the metabolic responses of subterranean and surface-dwelling amphipod crustaceans to long-term starvation and subsequent refeeding. Journal of Experimental Biology 202: 3587–3595.
|
[50] | Koop JHE, Sch?ffer M, Ortmann C, Winkelmann C (2008) Towards environmental assessment of river ecosystems by analysing energy reserves of aquatic invertebrates. Limnologica 38: 378–387 doi: 10.1016/j.limno.2008.05.004.
|
[51] | Becker J, Ortmann C, Wetzel MA, Winkelmann C, Koop JHE (2013) Mate guarding in relation to seasonal changes in the energy reserves of two freshwater amphipods (Gammarus fossarum and G. pulex). Freshwater Biology 58: 372–381 doi: 10.1111/fwb.12065.
|
[52] | Hervant F, Renault D (2002) Long-term fasting and realimentation in hypogean and epigean isopods: a proposed adaptive strategy for groundwater organisms. Journal of Experimental Biology 205: 2079–2087. ISSN: 0022–0949.
|
[53] | Pinna M, Fonsesu A, Sangeorgio F, Basset A (2004) Influence of summer drought on spatial patterns of resource availability and detritus processing in Mediterranean streams sub-basins (Sardinia, Italy) International Review of Hydrobiology. 89: 484–499 doi: 10.1002/iroh.200410765.
|
[54] | Roth-NebelSick A, Fernandez V, Peguero-Pina JJ, Sancho-Knapik D, Gil-Pelegrin E (2013) Stomatal encryption by epicuticular waxes as a plastic trait modifying gas exchange in a Mediterranean evergreen species (Quercus coccifera L.) Plant, Cell & Environment. 36: 579–589 doi: 10.1111/j.1365-3040.2012.02597.x.
|
[55] | Canhoto C, Gra?a MAS (1999) Leaf barriers to fungal colonization and shredders (Tipula lateralis) consumption of decomposing Eucalyptus globulus. Microbial Ecology 37: 163–172 doi: 10.1007/s002489900140.
|
[56] | Warren CR, Bleby T, Adams MA (2007) Changes in gas exchange versus leaf solutes as a means to cope with summer drought in Eucalyptus marginata. Oecologia 154: 1–10 doi: 10.1007/s00442-007-0803-2.
|
[57] | Clarke A (2004) Is there a universal temperature dependence of metabolism? Functional Ecology 18: 252–256 doi: 10.1111/j.0269-8463.2004.00842.x.
|
[58] | Seibel BA (2007) On the depth and scale of metabolic rate variation: scaling of oxygen consumption and enzymatic activity in the Class Cephalopoda (Mollusca). Journal of Experimental Biology 210: 1–11 doi: 10.1242/jeb.02588.
|
[59] | Seibel BA, Drazen JC (2007) The rate of metabolism in marine animals: environmental constraints, ecological demands and energetic opportunities. Philosophical Transactions of The royal Society B 362; 2061–2078. doi: 10.1098/rstb.2007.2101.
|
[60] | Clemens HP (1950) Life cycle and ecology of Gammarus fasciatus. Say. Contr. Stone Lab. Ohio Univ., 12, 63 p.
|
[61] | B?rlocher F, Kendrick B (1973) Fungi diet of Gammarus speudolimnaeus (Amphipoda). Oikos 24: 295–300 doi: 10.2307/3543888.
|
[62] | Willoughby LG, Sutcliffe DW (1976) Experiments on feeding and growth of the amphipod Gammarus pulex (L.) related to its distribution on the River Duddon. Freshwater Biology 6: 577–586 doi: –10.1111/j.1365–2427.1976.tb01647.x.
|
[63] | Clarke A, Skadsheim A, Holmes LJ (1985) Lipid biochemistry and reproductive biology in two species of Gammaridae (Crustacea: Amphipoda). Marine Biology 88: 247–263 doi: 10.1007/BF00392587.
|
[64] | Sutcliffe DW (1993) Reproduction in Gammarus (Crustacea: Amphipoda): females strategies. Freshwhater Fortum 3: 26–64. ISSN: 0961–4664.
|