The deposition of antimicrobial plant resins in honey bee, Apis mellifera, nests has important physiological benefits. Resin foraging is difficult to approach experimentally because resin composition is highly variable among and between plant families, the environmental and plant-genotypic effects on resins are unknown, and resin foragers are relatively rare and often forage in unobservable tree canopies. Subsequently, little is known about the botanical origins of resins in many regions or the benefits of specific resins to bees. We used metabolomic methods as a type of environmental forensics to track individual resin forager behavior through comparisons of global resin metabolite patterns. The resin from the corbiculae of a single bee was sufficient to identify that resin's botanical source without prior knowledge of resin composition. Bees from our apiary discriminately foraged for resin from eastern cottonwood (Populus deltoides), and balsam poplar (P. balsamifera) among many available, even closely related, resinous plants. Cottonwood and balsam poplar resin composition did not show significant seasonal or regional changes in composition. Metabolomic analysis of resin from 6 North American Populus spp. and 5 hybrids revealed peaks characteristic to taxonomic nodes within Populus, while antimicrobial analysis revealed that resin from different species varied in inhibition of the bee bacterial pathogen, Paenibacillus larvae. We conclude that honey bees make discrete choices among many resinous plant species, even among closely related species. Bees also maintained fidelity to a single source during a foraging trip. Furthermore, the differential inhibition of P. larvae by Populus spp., thought to be preferential for resin collection in temperate regions, suggests that resins from closely related plant species many have different benefits to bees.
References
[1]
Schmid-Hempel P (1998) Parasites in social insects. Princeton:Princeton University Press.
[2]
vanEngelsdorp D, Meixner MD (2010) A historical review of managed honey bee population in Europe and the United States and the factors that may affect them. . J. Invertebr. Path 103: S80–S95.
[3]
vanEngelsdorp D, Dewey C, Hayes J, Underwood R, Henson M, et al. (2012) A nation survey of managed honey bee 2010–2011 winter colony losses in the USA: Results from the Bee Informed Partnership. . J. Apic. Res 51(1): 115–124.
[4]
Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, et al. (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318: 283–287.
[5]
vanEngelsdorp D, Evans JD, Saegerman C, Mullin C, Haubruge E, et al. (2009) Colony collapse disorder: A descriptive study. PloS ONE 4: e6481 doi:10.1371/journal.pone.0006481.
[6]
van Dooremalen C, Gerristsen L, Cornelissen B, van der Steen JJM, van Langevelde F, et al. (2012) Winter survival of individual honey bees and honey bee colonies depends on level of Varroa destructor infestation. PloS ONE 7(4): e36285 doi:10.1371/journal.pone.0036285.
[7]
Johnson RM, Ellis MD, Mullin CA, Frazier M (2010) Pesticides and bee toxicity – USA. Apidologie 41: 312–331.
[8]
Alaux C, Ducloz F, Crauser D, Le Conte Y (2010) Diet effects on honeybee immunocompetence. Biol. Lett. 6: 562–565.
[9]
Johnson R (2010) Honey bee colony collapse disorder. Congressional Research Service
[10]
Evans JD, Aronstein K, Chen YP, Hetru C, Imler JL, et al. (2006) Immune pathways and defence mechanisms in honey bees Apis mellifera. . Insect Mol. Biol 15(5): 645–656.
[11]
Cremer S, Armitage S, Schmid-Hempel P (2007) Social Immunity. Curr. Biol. 17: R693–R702.
[12]
Wilson-Rich N, Spivak M, Fefferman NH, Starks PT (2009) Genetic, individual, and group facilitation of disease resistance in insect societies. . Annu. Rev. Entomol 54: 405–423.
[13]
Evans JD, Spivak M (2009) Socialized medicine: Individual and communal disease barriers in honey bees. J. Invertebr. Path. 103: S62–S72.
[14]
Gilliam M, Taber III S, Lorenz BJ, Prest DB (1988) Factors affecting development of chalkbrood disease in colonies of honey bees, Apis mellifera, fed pollen contaminated with Ascosphaera apis. . J. Invertebr. Path 52: 314–325.
[15]
Spivak M, Reuter GS (2001) Resistance to American foulbrood disease by honey bee colonies Apis mellifera bred for hygienic behavior. Apidologie 32: 555–565.
[16]
Simone M, Evans JD, Spivak M (2009) Resin collection and social immunity in honey bees. Evolution 63: 3016–3022.
[17]
Seely TD, Morse RA (1976) The nest of the honey bee Apis mellifera L. Insect. Soc. 23: 495–512.
Arrhenius SP, Langenheim JH (1983) Inhibitory effects of Hymenaea and Copaifera leaf resins on the leaf fungus, Pestalotia subcuticularis. Biochem. Sys. Ecol. 11(4): 361–366.
[20]
Langenheim JH, Hall GD (1983) Sesquiterpene deterrence of a leaf-typing lepidopteran, Stenoma ferrocanella, on Hymenaea stigonocarpa in central Brazil. Biochem. Sys. Ecol. 11(1): 29–36.
[21]
Witham TG (1983) Host manipulation of parasites: within plant variation as a defense against rapidly evolving pests. In Variable Plants and Herbivores in Natural and Managed Systems, New York: Academic Press. 15–41 p.
[22]
Chapuist M, Oppliger A, Magliano P, Christe P (2007) Wood ants use resin to protect themselves against pathogens. . Proc. R. Soc. London. B 247: 2013–1017.
[23]
Mennerat A, Perret P, Bourgault P, Blondel J, Gimenez O, et al. (2009) Aromatic plants in the nest of blue tits: positive effects on nestlings. . Anim. Behav 7: 569–574.
[24]
Ghisalberti EL (1976) Propolis: a review. Bee World 60: 59–84.
[25]
Alfonsus EC (1933) Some sources of propolis. Glean. Bee Cult. 61: 92–93.
[26]
Crane E (1990) Bees and Beekeeping: Science, Practice, and World Resources. Ithaca: Cornell University Press. 367–370 p.
[27]
Bankova VS, de Castro SL, Marcucci MC (2000) Propolis: recent advances in chemistry and plant origin. Apidologie 31: 3–15.
[28]
Bastos EMAF, Simone M, Jorge DM, Soares AEE, Spivak M (2008) In vitro study of the antimicrobial activity of Brazilian propolis against Paenibacillus larvae. . J. Inverter. Path 97: 273–281.
[29]
Kujumgiev A, Tsvetkova I, Serkedjieva Y, Bankova V, Christov R, et al. (1999) Antibacterial, antifungal and antiviral activity of propolis of different geographic origin. . J. Ethnopharmacol 64: 235–240.
[30]
Levin DA (1976) The chemical defenses of plants to pathogens and herbivores. Annu Rev Ecol Syst 7: 121–159.
[31]
Simone-Finstrom MD, Spivak M (2012) Increased resin collection after parasite challenge: A case of self-medication in honey bees? PLoS One 7(3): e34601, doi:10.1371/journal.pone.0034601.
[32]
USDA, NRCS National Plant Data Team (2013) USDA PLANTS Database, plants.usda.gov. Accessed 2013 Sept 16.
[33]
Bankova VS, Popova M, Trusheva B (2006) Plant sources of propolis: an update from a chemist's point of view. . Nat. Prod. Commun 1: 1023–1028.
[34]
Langenheim JH, Arrhenius SP, Nascimento JC (1981) Relationship of light intensity to leaf resin composition and yield in the tropical lenguminous gernera Hymenaea and Copaifera. Biochem. Syst. Ecol. 9(1): 27–37.
[35]
Smith CA, Want EJ, O′Maille G, Abagyan R, Siuzdak G (2006) XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. . Anal. Chem 78: 779–787.
[36]
Tautenhahn R, B?ttcher C, Neumann S (2008) Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics 9(504), doi: 10.1186/1471-2105-9-504.
[37]
Bankova V, Boudourova-Krasteva G, Popov S, Sforcin JM, Funari C (1998) Seasonal variations of the chemical composition of Brazilian propolis. Apidologie 29: 361–367.
[38]
Greenway W, Jobling J, Scaysbrook T (1987) Composition of bud exudate of Populus x interamericana clones as a guide to clonal identification. Silvae Genetica 38(1): 28–32.
[39]
English S, Greenway W, Whatley FR (1991) Analysis of phenolics of Populus trichocarpa bud exudates by GC-MS. Phytochemistry 30(2): 531–533.
[40]
English S, Greenway W, Whatley FR (1992) Analysis of phenolics in the bud exudates of Populus deltoides, P. fremontii, P. sargentii and P. wislizenii by GC-MS. Phytochemistry 31(4): 1255–1260.
[41]
Hamzeh M, Dayanandan S (2004) Phylogeny of Populus (Salicaceae) based on nucleotide sequences of chloroplast trnT-trnF region and nuclear rDNA. . Am. J. Bot 91(9): 1398–1408.
[42]
Leonhardt SD, Bluthgen N (2009) A Sticky affair: Resin collection by Bornean stingless bees. Biotropica 41(6): 730–736.
[43]
Leonhardt SD, Zeilhofer S, Bluthgen N, Schmitt T (2010) Stingless bees use terpenes as olfactory cues to find resin sources. Chem. Senses 35: 603–611.
[44]
Teixeira EW, Negri G, Meira RMSA, Message D, Salatino A (2005) Plant origin of green propolis: Bee behavior, plant anatomy and chemistry. eCAM 2(1): 85–92.
[45]
Simone-Finstrom M, Gardner J, Spivak M (2010) Tactile learning in resin foraging honeybees. Behav. Ecol. Sociobiol. 64(10): 1609–1617.